Did you start with a sketch?!
Gravity is a conservative force $=>$ a potential energy exists

H
$\vec{F}=-m g \hat{z} \rightarrow V--\int_{0}^{z}-m g d z^{\prime}=m g z$
Energy conservation: during the motion
$\frac{1}{2} m v^{2}+m g z=$ const $=m g H$
From this we find that the velocity upon impact with the ground $(\mathrm{z}=0)$
is $\frac{1}{2} m v^{2}=m g H \rightarrow v= \pm \sqrt{2 g H}$ The minus sign is the one we need as the particle moves in the negative z-direction.
Note: dimensions are correct.
Take time derivative:

$$
\frac{1}{2} m 2 v \frac{d v}{d t}+\operatorname{mg} \frac{d z}{d t}=0 \rightarrow m \frac{d v}{d t}=-m g
$$

Indeed we get N 2 back for this situation.
Solving is straight forward: $\frac{d v}{d t}=-g \rightarrow v=-g t+C$
Initial condition: $t=0 \rightarrow v=0 \Rightarrow C=0 \rightarrow v=-g t$
Since we already the velocity upon impacting the ground, we don't need to solve the trajectory to find the time when the particle hits the ground:
$v\left(t^{*}\right)=-g t^{*}=-\sqrt{2 g H} \rightarrow t^{*}=\sqrt{\frac{2 H}{g}}$
Check:

- Dimensions: ok
- the higher H the longer it takes -> ok
- no gravity: $t^{*} \rightarrow \infty$: ok

