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Introduction 

During this course you will be introduced to designing and performing mathematical computations 
assisted by Matlab. You will also get acquainted with basic programming skills. If you learn to use 
this program well, you will find it very useful in the future, since many technical or mathematical 
problems (in thesis projects) can be solved with the help of Matlab. 

This text includes all necessary material (with some additional information), however, many things 
are treated briefly. Therefore, we recommend one of the following books as an additional resource 
of information during the course: 

• D.C. Hanselman, B. Littlefield, “Mastering Matlab 6: A Comprehensive Tutorial and 
Reference”, Prentice Hall, 2001, ISBN 0-13-019468-9 ($60) 

• D.M. Etter, D.C. Kuncicky, D.W. Hull, “Introduction to Matlab 6”, Prentice Hall, 2002, ISBN 
0-13-032845-6 ($32) 

Exercises are marked with [�] in the left margin. The end of an exercise is marked with [�]. 

Please test after each section whether you have sufficient understanding of the issues discussed. 
Use the lists provided below. You should be able to: 

Section 1-2: MATLAB’s basis syntax and variables; 

• use on-line help and lookfor to get more information on a command; 

• recognize built-in variables; 

• define variables and perform basic mathematical operations using them; 

• add, remove and inspect variables in the MATLAB workspace; 

• use the load and save commands to read/save Workspace data to/from a file. 

• know how to suppress display with ;(semicolon); 

• use the format command to adjust output to the Command Window; 

• access files at different directories (manipulate path-changing commands); 

• use relational operators: <, <=, >, >=, ==, ~=, and logical operators: &,|and ~; 

• understand the logical addressing. 

Section 3: MATLAB programs 

• edit and run an m-file (both functions and scripts); 

• identify the difference between scripts and functions; 

• understand the concept of local and global variables; 

• create a function with one or more input arguments and one or more output arguments; 

• use comment statements to document scripts and functions. 

Section 4: Mathematics with matrices 

• create matrices (including vectors) with direct assignment, using [ ](brackets); 

• use linspace to create vectors; 

• create random vectors and matrices; 

• create matrices via the commands: eye, ones, zeros and diag; 

• build a larger matrix from smaller ones; 

• use :(colon) notation to create vectors and extract ranges of elements from vectors and 
matrices; 

• extract elements from vectors and matrices with subscript notation, e.g., x(5), A(i,j); 

• apply transpose operations to vectors and matrices; 

• perform legal addition, subtraction, and multiplication operations on vectors and matrices; 

• understand the use of dot operations, such as .*, ./, ... and know why they are different from 
the regular *, / , ... operators; 

• delete elements from vectors and matrices; 

• compute inner products and the Euclidean length of (complex) vectors. 
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Section 5: Text and cell arrays 

• create and manipulate string variables, e.g., compare two strings, concatenate them, find a 
substring in a string, convert a number/string into a string/number, etcetera; 

• use freely and with understanding the text input/output commands: input,disp and fprintf; 

• operate on cell arrays. 

Section 6: Control flow 

• use if...end, if...elseif...end and if...elseif...else...end and switch constructs 

• use for-loops and while-loops and know the difference between them; 

• understand how logical expressions are evaluated in the control flow structures. 

Section 7: Visualization 

• use the plot command to make simple plots; 

• know how to use hold on/off 

• plot several functions in one figure either in one graphical window or by creating a few smaller 
ones (the use of subplot); 

• add a title, grid and legend, describe the axes, change the range of the axes; 

• use logarithmic axes; 

• send plots to a printer or print them to a file. 

Section 8: Numerical analysis 

• create and manipulate MATLAB polynomials; 

• fit a polynomial to the data; 

• interpolate the data; 

• evaluate a function; 

• integrate and differentiate a function; 

• understand how to make approximations of Taylor expansions with given precision. 

Section 9: Optimize MATLAB commands on performance 

• pre-allocate memory for vectors or matrices and know why and when this is beneficial; 

• replace basic loops with vectorized operations; 

• use :(colon) notation to perform vectorized operations; 

• understand the two ways of addressing matrix elements using a vector as an index: traditional 
and logical indexing; 

• use array indexing instead of loops to select elements from a matrix; 

• use logical indexing and logical functions instead of loops to select elements from matrices; 

• understand MATLAB’s tricks. 

Section 10: Writing and debugging MATLAB programs 

• know and understand the importance of structural programming and debugging; 

• know how to debug your program; 

• have an idea how to write programs using the recommended programming style. 
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1 Getting started with MATLAB 

MATLAB (matrix laboratory) is a tool for mathematical (technical) calculations (computing): 
integrating computation, visualization and programming. It can be used as a scientific calculator. 
Apart from that, it allows you to plot or visualize data in many different ways, perform matrix 
algebra, work with polynomials or integrate functions. Like with a programmable calculator, you 
can create, execute and save a sequence of commands (script) in order to make your computational 
process automatic. It can be used to store and retrieve data. MATLAB can be treated as a 
programming language, which offers the possibility to handle calculations in an easy way. Note that 
MATLAB is especially designed to work with data sets as a whole, such as vectors, matrices and 
images. For that reason, PRTOOLS, a toolbox for Pattern Recognition purposes, and DIPLIB, a 
toolbox for Image Processing, have been developed under MATLAB. 

1.1 Key Concepts 

Please read the following basic definitions on computers and programming needed in the coming 
sections. 

• A bit (short for binary digit) is the smallest unit of information on a computer. A single bit or 
electrical unit having only two states: charged and uncharged. It can hold one of two values: 
either 0 or 1. 

• The binary system is a number system that has two unique digits: 0 and 1. Each digit position 
represents a different power of 2. The powers of 2 increase while moving from the rightmost to 
the leftmost position, starting from 20 = 1. Here is an example of a binary number and its 
representation in the decimal system: 

• bin(10110) = dec(1*24  +  0*23  +  1*22  +  1*21  +  0*20) = 16 + 0 + 4 + 2 + 0 = 22 

• A byte is a unit of 8 bits. It can hold values (from 0 to 255) and is used to store a single 
character. Large amounts of memory are indicated in terms of kilobytes (1 kB = 210 = 1024 
bytes), megabytes (1 MB = 1024 kB), and gigabytes (1GB = 1024 MB). So 1 MB = 220 = 
1,048,576 bytes, and 1 GB = 230 = 1,073,741,824 bytes. (When it involves selling these bytes, 
hard disk manufacturers bend the rules: they use 1 GB = 109bytes). 

• Floating point representation is way to store very small or very large numbers with a fixed 
amount of bits/bytes. This representation can hold a much larger range of numbers than integer 
of fix point representation in the same amount of memory. It is comparable to the way scientist 
write very large and very small number e.g. c = 299792458 m/s 2.99792458 · 108 m/s. Any 
number x is represented as x=m be, with m the mantissa, b the base and e the exponent. As base 
you chose 2 for computing. The name stems from the fact that the decimal point is not fixed. 

• Data is information represented with symbols, e.g., numbers, words, signals or images. 

• A variable is a container that can hold a value. For example, in the expression x+y, x and y 
are variables. It can represent data: numeric values, such as 25.5, characters, such as ‘c’ or an 
array of characters (string) such as ‘Matlab’. Every variable is identified with a name (called the 
variable name) and has a data type. A variable’s data type indicates how the data are stored and 
displayed, e.g.: 

• integer: a whole number; a number that has no fractional part, e.g., 3; 

• floating-point: a number with a decimal point, e.g. 3.5 or 1.2e-16 (this stands for 1.2*10-16); 

• character: a standardized (using ASCII standard), readable text character (can be part of an 
ASCII text file). 

• A command is an instruction to manipulate the contents of variables (e.g. y = x+2, meaning 
assign the value of x+2 to the variable y). 

• An algorithm is a sequence of instructions for the solution of a specific problem.  

• A program is a sequence of commands (implementing the algorithm) to do a specific task: 
solving a problem on a computer. When a program is executed, the variables represent a type of 
real data. That is why the same program can process different sets of data. 

• A bug is an error in a program: the program does not solve your problem but another problem. 
The error can cause the program to stop running or provide wrong results. 

• Debugging is the process of finding and removing bugs. 
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• A file is a collection of data or information that has a name: (e.g. data-, program-, or text-files). 

• A binary file is a file stored in bit format (not meant to be read by humans). Most numeric data 
and all executable programs are stored in binary files. MATLAB binary files are those with the 
file-extension ’*.mat’ as opposed to: 

• An ASCII file is a file stored in byte format (using human readable ASCII standard), such as a 
*.m-file. 

1.2 Starting MATLAB 

Before you start up MATLAB under Windows you must create your own directory H:/MATLAB. So, 
change your current directory wit the cd command in H:/MATLAB. Now you can start MATLAB by 
double clicking on the MATLAB icon  that should be on the desktop of your computer. Running 
MATLAB creates one or more windows on your screen. The most important window is the Command 
Window, which is the place you interact with MATLAB , i.e. it is used to enter commands and display 
text results. The string >> is the MATLAB prompt (or EDU>> for the Student Edition). When the 
Command Window is active, a cursor appears after the prompt, indicating that MATLAB is waiting 
for your command. MATLAB responds by writing text in the Command Window or by creating a 
Figure Window for graphics. To exit MATLAB use the command exit or quit. 

1.3 Input and output via the Command Window 

MATLAB is an interactive system; commands are executed immediately when typed in the command 
window and followed by Enter. The results are, if desired, displayed on screen. However, execution 
of a command will only be possible if the command is typed according to the rules (according to the 
MATLAB syntax). 

Table 1 shows a list of commands used to solve indicated mathematical problems (a, b, x and y 
represent numbers). Below you find basic information to help you starting with MATLAB. 

Commands in MATLAB are executed by pressing Enter or Return. The output will be displayed in the 
Command Window immediately. Try the following: 

>> 3 + 7.5 

>> 18 / 4 

>> 3 *   7 

Note that additional spaces are not important in MATLAB. 

The result of the last performed computation is assigned to the variable ans, which is an example of 
a MATLAB built-in variable. For instance: 

>> 14/4 

ans =  

   3.5000 

>> ans^(-6) 

ans =  

   5.4399e-004 

Note that 5.4399e-004 is the notation that MATLAB uses to represent the contents of the variable 
ans on the screen. In fact it is not the exact contents of the variable (see 1.1 Key concepts). 
0.000543991 is another notation for the contents of ans. Also note that the contents of ans=3.5 is 
overwritten with 5.4399e-004 without any warning. 

By default, MATLAB displays only 5 digits. The command format long increases this number to 15: 
format short reduces it to 5 again. Try: 

>> help format  

>> 312/56 

ans =  

   5.5714 

>> format long 

>> ans 

ans =  

   5.57142857142857 
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You can also define your own variables: 

>> a = 14/4  % Text after % until the end of a line is treated as comment. 

a = 

   3.5000 

>> b = a^(-6);  % The semicolon ‘;’ suppresses writing the result of a command. 

>> b 

b = 

   5.4399e-004 

You will learn more on MATLAB variables in section 2.2. 

You will notice that some examples in this text are followed by comments. Use comments in your 
own programs to explain the task of the command or group of commands in your program. 

It is possible to enter more than one command on the same line. The separate commands should 
then be separated by a comma (to display the output) or by a semicolon (to suppress the display of 
output), e.g.: 

>> sin(pi/4), cos(pi); sin(0) 

ans =  

   0.70710678118655 

ans =  

   0 

The output may contain some empty lines; this can be suppressed by the command format 
compact. In contrast, the command format loose will insert extra empty lines. 

To enter a single statement using two lines, use three periods ‘...’ followed by Enter or Return. For 
instance: 

>> sin(1) + sin(2) - sin(3) + sin(4) - sin(5) + sin(6) - ... 

sin(8) + sin(9) - sin(10) + sin(11) - sin(12) 

ans = 

   1.03571874568747 

MATLAB is case sensitive, for example, a is written as a in MATLAB ; using A will then result in an 
error or display the contents of another variable. 

Previous commands can be fetched with the �-key. The command can also be changed: the  and 
�-keys may be used to move around in a line and edit it. In case of a long line, Ctrl-a and Ctrl-e 
may be useful: they allow to move the cursor to the beginning or the end of the line, respectively. To 
recall the most recent command starting from e.g. c, type c at the command prompt followed by the 
�-key. Similarly, cos followed by the �-key will find the last command starting from cos. 

Since MATLAB executes the command immediately, it might be useful to have an idea of the 
expected outcome. You might be surprised how long it takes to print out a 1000 x 1000 matrix! 

1.4 Interrupting a command or program 

Sometimes you might spot an error in your command or program. Due to this error it can happen 
that the command or program does not stop. Pressing Ctrl-Break (or Ctrl-C on a UNIX machine) 
forces MATLAB to stop the process. Sometimes, however, you may need to press a few times. After 
this, the MATLAB prompt (>>) re-appears. This may take a while, though. 

 

Mathematical notation MATLAB command 

ba +  a+b 

ba −  a-b 

ab  a*b 

ba  a/b or b\a 
b

x  x^b 

x  sqrt(x)or x^0.5 

x  abs(x) 

π  pi 
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3104 ⋅  4e3 or 4*10^3 

i  i or j 

i43 −  3-4*i or 3-4*j 
x

ee,  exp(1),exp(x) 

ln( ), log( )x x  log(x),log10(x) 

sin( ), arctan( )x x  sin(x),atan(x) 

Table 1, Translation of mathematical notation to MATLAB commands.                                  

1.5 Help-facilities 

MATLAB provides assistance through extensive help. The help command is the simplest way to get 
help. It displays the list of all possible topics. To get a more general introduction to help, try: 

>> help help 

If you already know the topic or command, you can ask for a more specific help. For instance: 

>> help ops 

gives information on the operators and specific characters in MATLAB . The topics you want help on 
must be exact and spelled correctly. The ‘lookfor‘ command is more useful if you do not know the 
exact name of the command or topic. For example: 

>> lookfor inverse 

Displays a list of commands, with a short description, for which the word inverse is included in its 
help text. You can also use an incomplete name, e.g. lookfor inv. Beside the help and lookfor 
commands, there is also a separate mouse driven help. The helpwin command opens a new window 
on screen which can be browsed in an interactive way. 

� Exercise 1  

• Is the inverse cosine function, known as cos-1 or arccos, one of the MATLAB’s elementary 
functions? 

• Does MATLAB have a mathematical function to calculate the greatest common divisor? 

• Look for information on logarithms. 

Use help or lookfor to find out. � 

1.6 Introduction to the Workspace 

If you work in the Command Window, MATLAB memorizes all commands that you entered and all 
variables that you created. These commands and variables are said to reside in the MATLAB 
Workspace. They might be easily recalled when needed, e.g. to recall previous commands, the ‘-’ 
key is used. Variables can be verified with the commands who, that gives a list of variables present in 
the workspace, and whos, that includes also information on name, number of allocated bytes and 
class of variables. For example, assuming that you performed all commands from section 1.1, after 
typing who you should get the following information: 

>> who 

Your variables are: 

a    ans    b    x 

The command clear <name> deletes the variable <name> from the MATLAB workspace, clear or 
clear all removes all variables. This is useful when starting a new exercise. For example: 

>> clear a x 

>> who 

Your variables are: 

ans    b 
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1.6.1 Path 

In MATLAB, commands or programs are contained in m-files, which are just plain text files and have 
an extension ‘.m’ (see Chapter 3). The m-files must be located in one of the directories which 
MATLAB automatically searches. The list of these directories can be listed by the command path. 
One of the directories that is always taken into account is the current working directory, which can 
be identified by the command pwd. Use the path, addpath and rmpath functions to modify the 
path. It is also possible to access the path browser from the File menu-bar, instead. 

� Exercise 2  

Type path to check which directories are placed on your path. If you didn’t before you have to 
create your own directory H:/MATLAB with the cd command. � 

1.6.2 Saving and loading Workspace variables 

The easiest way to save or load MATLAB variables is by using (clicking) the File menu-bar, and then 
selecting the Save Workspace as ... or Load Workspace ... items respectively. Also MATLAB 
commands exist which save data to files and which load data from files. 

� Exercise 3  

The command save allows saving your workspace variables into either a binary file or an ASCII file 
(see 1.1 Key concepts on binary and ASCII files). Binary files automatically get the ‘.mat’ 
extension, which is not true for ASCII files. It is recommended, however, to add a ‘.txt’ or ‘.dat’ 
extension to the latter. 

Learn how to use the save command by exercising: 

>> s1 = sin(pi/4); 

>> c1 = cos(pi/4); c2 = cos(pi/2); 

>> str = ‘hello world’;  % this is a string 

>> save               % saves all variables in binary format to matlab.mat 

>> save data      % saves all variables in binary format to data.mat 

>> save numdata s1 c1  % saves numeric variables s1 and c1 to numdata.mat 

>> save strdata str     % saves a string variable str to strdata.mat 

>> save allcos.dat c* -ascii % saves c1,c2 in ascii format to allcos.dat � 

The load command allows for loading variables into the workspace. It uses the same syntax as 
save.  

� Exercise 4  

Having done the previous exercise, try to load variables from the created files. Before each load 
command, clear the workspace and after loading, check which variables are present in the 
workspace (use who). 

>> load             % loads all variables from the file matlab.mat 

>> load data s1 c1   % loads the specified variables from the file data.mat 

>> load Matlab str data  % loads only str from the file matlab.mat 

It is also possible to read ASCII files that contain rows of space-separated values. Such a file may 
contain comments that begin with a percent character. The resulting data is placed into a variable 
with the same name as the ASCII file (without the extension). Check, for example: 

>> load allcos.dat   % loads all variables from the file allcos.dat 

>> load Matlab data s1 c1 % loads specified variables from the file matlab.mat 
� 

2 Basic syntax and variables in MATLAB 

You have already got some experience with MATLAB and you know it can be used as a calculator. 
This chapter discusses in further detail the syntax of MATLAB -commands with which you can 
manipulate variables. 
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2.1 MATLAB as a calculator 

There are three kinds of numbers used in MATLAB: integers, real numbers and complex numbers. In 
addition, MATLAB has representations of the non-numbers: Inf, for positive infinity, generated e.g. 
by 1/0, and NaN, Not-a-Number, obtained as a result of the mathematically undefined operations 
such as 0/0 or ∞ - ∞ . 

MATLAB has six basic arithmetic operations, such as: +, -, *, / and \ (right and left divisions) and 
^(involution, or raising to a power). Note that the two division operators are different: 

>> 19\3, 3/19    % mathematically both 3/19 

ans = 

    0.1579 

ans = 

    0.1579 

Basic built-in functions, trigonometric, exponential, etc., are available for a user. Try help elfun to 
get the list of elementary functions. 

� Exercise 5  

Modify the format in MATLAB such that empty lines are suppressed and the output is given with 15 
digits. Calculate: 

>> pi 

>> sin(pi) 

Note that the answer is not exactly 0: why?. Use the command format to put MATLAB in its 
standard-format. � 

2.2 Assignments and variables 

Working with complex numbers is easily done with MATLAB. 

� Exercise 6  

Choose two complex numbers, for example -3+2i and 5-7i. Add, subtract, multiply, and divide these 
two numbers. � 

During this exercise, the complex numbers had to be typed four times. To reduce this, assign each 
number to a variable. For the previous exercise, this results in: 

>> z = -3 + 2*i; w = 5 - 7*i 

>> y1 = z + w; y2 = z - w; 

>> y3 = z * w; 

>> y4 = z / w; y5 = w \ z; 

Formally, there is no need to declare (i.e. define the name, size and the type of) a new variable in 
MATLAB. A variable is simply created through an assignment (see key concepts), for example: 

>> x = pi / 3 ; f = x^2 + 4 * sin(x) 

Each newly created numerical variable is always of the type double, i.e., the container size is 64 bit 
by default: real numbers are approximated with the highest possible precision (see help eps). 

You can change this type by converting it into, e.g., the single type with a = single(a). In some 
cases, when huge matrices should be handled and precision is not very important, this might be a 
way to proceed. Also, when only integers are taken into consideration, it might be useful to convert 
the double representation into e.g. int32 integer type with a = int32(a). 

Note that integer numbers are represented exactly within a certain range, no matter which numeric 
type is used, as long as the number can be represented in the number of bits used in the numeric type 
for instance: a byte is a unit of 8 bits. It can hold 28=256 values. 

Bear in mind that undefined values cannot be assigned to variables. So, the following is not 
possible: 

>> clear x    % to make sure that x does not exist 

>> f = x^2 + 4 * sin(x) 

Variable names (identifiers) begin with a letter, followed by letters, numbers or underscores. Only 
31 characters may be used for MATLAB identifiers. 
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� Exercise 7  

Here are some examples of different types of MATLAB variables. You do not need to understand 
them all now, since you will learn more about them during the course. Create them manually in 
MATLAB: 

>> this_is_my_very_simple_variable_today = 5 % what happens? 

>> 2t = 8                  % what is the problem with this command? 

>> M = [1 2; 3 4; 5 6]     % a matrix 

>> c = ‘E’                % a character 

>> str = ‘Hello world’    % a string 

>> m = [‘J’, ‘o’,‘h’,‘n’]   % try to guess what it is 

Check the types by using the command whos. Use clear <name> to remove a variable from the 
workspace. � 

As you already know, a MATLAB variable is created by an assignment if it does not exist in the 
workspace; if it already existed, its previous value is lost. For example: 

>> clear; 

>> b = 5; c = 7; 

>> a = min(b,c);          % create a as the minimum of b and c 

>> whos 

  Name      Size           Bytes  Class 

  a         1x1                8  double array 

  b         1x1                8  double array 

  c         1x1                8  double array 

Grand total is 3 elements using 24 bytes 

>> a='hello'; 

>> whos 

  Name      Size           Bytes  Class 

  a         1x5               10  char array 

  b         1x1                8  double array 

  c         1x1                8  double array 

Grand total is 7 elements using 26 bytes 

In the previous example the function min is called with b and c as parameters. The result of this 
function (its return value) will be written (assigned) into a. So, variables can be created as results of 
the execution of built-in or user-defined functions (you will learn more on how to build your own 
functions in section 3.2). 

Important: do not use variable names which are defined as function names (e.g., mean or error). If 
you are going to use a suspicious variable name, use help <name> to find out whether the function 
already exists or not. 

2.3 MATLAB syntax and semantics issues 

A natural language is so called because it evolves naturally: it is whatever the members of a human 
community ‘agree’ to use for communication among themselves. It might well be rich in 
ambiguities. This is tolerable because listeners and readers are also intelligent. On the other hand, a 
computer language must be simple and direct, since it will be used to instruct an uncomprehending 
machine (no unkind remark to MATLAB). 

In ordinary life there are many things that we wish to specify, such as engineering designs and 
knitting patterns. Scientists concerned with the design, implementation and use of algorithms 
(computer languages) – i.e., all scientists – should be acquainted with the principal methods of 
specifying a language formally: the theme of this section. 

Every language has its syntax and semantics. Syntax is concerned with form, semantics with 
meaning. Each language has a vocabulary of symbols (e.g., =,+->), and rules (the grammar) for how 
these symbols may be put together to form phrases: expressions, commands and programs: 

• The meaning of an expression is a computation that yields a value (e.g. a + 2 might yield 202).  
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• The meaning of a command is a computation that manipulates variables (e.g. b = a + 2 might 
change the value of b to 202).  

MATLAB automatically prepares (translates) commands for executing them on a computer. This is 
exactly the motivation to use MATLAB and not try to create your own Pentium or other processor-
specific code. This section explains the fundamental idea of syntax: how to write well-formed 
phrases in the MATLAB language which can be understood (interpreted) by MATLAB. 

2.3.1 Syntax trees and logical data type 

Consider the phrase ‘a&b-c’. This phrase consists of a number of sub-phrases. Without rules the 
decomposition into sub-phrases is not obvious. We can make the phrase structure explicit by means 
of syntax trees. Each phrase corresponds to a tree. Branching represents the subdivision of phrases 
into subphrases. Without precedence rules it is not obvious which decomposition of ‘a&b-c’ is 
meant by the programmer. 

 

Correct decomposition Incorrect decomposition 

 

 

 

 

 

 

 

 

 

 

First calculate b – c, yielding a numeric value. 
Next, calculate the logical expressions 

( a & (b-c) ). 

Verify that:  
1 & 3 – 3 =  0                  1 & 0 – 1 = 1 

And not: 
1 & 3 – 3 = –2                 1 & 0 – 1 = –1 

Note that that not only 1 == TRUE but also   
3 == TRUE, and  –1 == TRUE. 

 

First calculate the logical expressions (a & b): 
which yields a  logical value: TRUE or FALSE. 
In MATLAB the result of a logical expression is 1 
if it is true and 0 if it is false. 

Next, calculate (a & b) – c: which yields a 
numeric value. In this case (1 – c) or (0 – c). 

The previous example introduced two kinds of expressions. Truth-valued expressions and number-
valued expressions. 

Production rules specify how commands, expressions and numerals are formed. First there are the 
complete commands (such as a = 1+2). Then there are expressions (such as 1+2). Then there are 
numerals (such as 2).  

The execution precedence of the arithmetic, relational and logical operators in expressions is: 

• involution: ^ 

• multiplication: *  or   division: / or: \ 

• addition: +  or  subtraction: −greater than: >  or  not less than: >=  or  equal: ==  or  not greater 
than: <=  or  less than: < 

• logical AND: &  or  logical OR: |  or  logical complement NOT: ~ 

 

Input A Input B ~A (NOT) A&B (AND) A|B (OR) 

0 0 1 0 0 

0 any value ~= 0 1 0 1 

any value ~= 0 0 0 0 1 

any value ~= 0 any value ~= 0 0 1 1 

Expression 

Expression 

b - c 

& a 

Expression 

Expression 

a & b 

- a 
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Table 2, logical operators.                                  

 

MATLAB Command Result (default: a = 0) 

a = (b > c) a = 1 if b is larger than c. Similar for: < , >=  and  <= 

a = (b == c) a = 1 if b is equal to c 

a = (b ~= c) a = 1 if b is not equal to c 

a = ~b logical complement: a = 1 if b is 0,  a = 0 if b ~= 0 

a = (b & c) logical AND: a = 1 if b = TRUE AND c = TRUE 

a = (b | c) logical OR: a = 1 if b = TRUE OR c = TRUE 

 
Table 3, Relational and logical operators 

Note: Be careful with implementing the equal command using ==. In the computer the value of pi 
is approximated. Knowing this limitation easily provides the solution (see help eps).  

>> sin(pi) == 0 

ans = 

      0 

>> abs( sin(pi) ) <= eps 

ans = 

    1 

Note: The logical & and | have equal precedence in MATLAB, which means that those operators 
associate from left to right. A common situation is: 

>> b = 10 

>> 1 | b & 0 & 0 

ans = 

      1 

 

 

 

 

 

 

 

 

In case of ambiguity the association of operators is from left to right: creating the tree. After 
building the tree first (0 & 0) is evaluated yielding 0. Subsequently (b & 0) is evaluated, yielding 0 
regardless the value of b. Finally 1 | (b & 0 & 0)  is evaluated. We now se that this expression 
always will yield 1 regardless the value of b. 

(1 or (b & (0 & 0))) = 1 o r(b & 0)) = (1 or 0) = 1 

This shows that you should always use parentheses to indicate in which way you want MATLAB to 
understand your expression in case of ambiguity. 

The representation of the logical data type using logical 0 and 1 values can be used for indexing. 
You can see the differences between the use of logical and non-logical values by executing the 
following commands that attempt to extract the elements of y that correspond to either the odd or 
the even elements of x: 

>> x = [9 8 7 6 5]   % a vector with five values 

>> use = logical([1 2 3 4 0]) % a vector with five truth-values 

use =     % 0 is FALSE and > 0 denotes TRUE 

     1  1  1  1  0 

>> x(use)     % select only those indices for which use is TRUE 

ans = 

     9 8 7 6 

b & 0 & 0 

 

0 & 0 

 

0 & 0 

& b 

1 | b & 0 & 0 

| 1 
CREATE 

CALCULATE 
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>> use = [1 2 3 4 0]  % If we try this then Matlab tries to create a new 

>> x(use)     % vector with the first, second, ... , zeroth element 

      % However, the zeroth element does not exist 

??? Index into matrix is negative or zero.  See release notes on changes to  

logical indices. 

To select all odd elements from a vector x we can now simply compute (see help rem): 

>> x( logical(rem(x,2)) ) % remainder after division by 2 

 

� Exercise 8  

Let x = [3 16 9 12 -1 0 -12 9 6 1] and y = [ 3 5 6 1 8 2 9 4 0 7]. The exercises here 
show the techniques of logical-indexing. Execute and interpret the results of the following 
commands: 

x(x>5) 

y(x<=4) 

x(y<0) 

(x>3)&(x<8) 

x((x<2)|(x>=8)) 

y((x<2)|(x>=8)) 

• set the positive values of x to zero 

• set values of x that are multiples of 3 to 3 (use rem) 

• extract the values of x that are > 10 � 

� Exercise 9  

Evaluate the following expressions by hand and use MATLAB to check the answers. Note the 
difference between the left and the right divisors. Use help to learn more on commands rounding 
numbers, such as round, floor and ceil. 

2/2*3 

8*5\4 

8*(5\4) 

7-5*4\9 

6-2/5+7^2-1 

10/2\5-3+2*4 

3^2/4 

3^2^3 

2+round(6/9+3*2)/2 

2+floor(6/9+3*2)/2 

2+ceil(6/9+3*2)/2 

x=pi/3,x=x-1,x=x+5,x=abs(x)/x � 

Before moving on, check whether you now understand the following relations: 

>> a = randperm(10); % random permutations 

>> b = 1:10; 

>> b - (a <= 7)  % subtract from b taking 1 for a<=7 and 0 otherwise 

>> (a >= 2) & (a < 4) % ones at positions where 2 <= a < 4 

>> ~(b > 4)   % ones at positions where b <= 4 

>> (a == b) | b == 3 % ones at positions where a == b or b == 3  

>> any(a > 5)   % 1 when ANY of the a elements are larger than 5 

>> any(b < 5 & a > 8) % 1 when in the evaluated expression is at least one 1 

>> all(b > 2)   % 1 when ALL b-elements are larger that 2 

3 MATLAB programs: script and function m-files 

MATLAB commands can be entered at the MATLAB prompt. When a problem is more complicated 
this becomes inefficient. A solution is using script m-files. They are useful when you want to change 
values of some variable and re-evaluate them quickly.  

3.1 Script m-files 

Formally, a script file is an external file that contains a sequence of MATLAB commands: a MATLAB 
program. When you run a script, the commands in it are executed as if they have been executed 
from the command line. 

The sequence of commands in a script is executed using the file-name (without the extension) at the 
MATLAB command line. It is also possible to execute script files from within other MATLAB 
programs. 

In the following example the fprintf function is used to write data (e.g. a string) to the display. 
Special format characters can be used such as ‘\n’ for a linefeed or ‘\t’ to jump to the next 
tabulator (fixed horizontal location). 
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% The text after the percentage sign at the lines before 

% the bracket will appear when you type help ‘name of script m-file’. 

[ 

C1; % The script-body contains a collection of subcommands. 

 

 

 

>> help myscript 
 
   Example 1: cumulative sum 
 
>> myscript 
Begin of example 1 
s =  
   1  1  1  1  1  1  1  
 
ans = 
   1  2  3  4  5  6  7 
 
End of example 1 
>> 

Note: MATLAB variables, names, script names and function names may neither contain spaces  
 nor they may start with a number! 

 

� Exercise 10  

Create a script: open the MATLAB editor (go to the File menu-bar, choose the New option and then 
M-file; the MATLAB Editor Window will appear), enter the lines listed below and save these lines in 
a M-file named sinplot.m. 

x = 0:0.2:6; 

y = sin(x); 

plot(x,y); 

title(’Plot of y = sin(x)’); 

and then run it by: 

>> sinplot 

The sinplot script affects the workspace. Check: 

>> clear % all variables are removed from the workspace 

>> who    % no variables present 

>> sinplot 

>> who � 

These generic names, x and y, may be easily used in further computations and this can cause side 
effects. Side effects occur in general when a set of commands change variables other than the input 
arguments. Since scripts create and change variables in the workspace (without warning), a bug, 
hard to track down, may easily occur. 

So it is important to remember that the commands within a script have access to all variables in the 
workspace and all variables created in a script become part of the workspace (think of the clear 
command in a script). Therefore it is better to use function m-files when there is a specific problem 
to be solved. 

 

� Exercise 11  

Create a script which plots (see help plot where you can omit the parameter s), in the same 
figure, the functions cos( ) sin( )1 2 , 2 2x xy y= =  (y1 = 2.^cos(x), the operator .^ means element-by-
element operation see chapter 4) in the range [-10,10]. Choose a sufficient length for x in order to 
obtain a smooth plot. Add a title, legend and axis descriptions (see chapter 7 for title) � 

Syntax 

Example with output 
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3.2 Function m-files 

New functions can be added to MATLAB through function m-files. Through the use of input and 
output-variables it is possible to communicate with other files. Variables defined and used inside a 
function, other than the inputs/ outputs, are invisible to other functions and the command 
environment.  

The name of the file is the name of the function which can be used to call the function from an other 
file or command-line. 

 

  

 

 

 

 

 

 

 

Try entering these commands in an M-file called mynorm.m. This function accepts a single input 
argument and returns a single output argument. To call the mynorm function, enter: 

in = [2 3 6]; 

mynorm(in) 

  ans = 

  7 

note: Variables inside a function, are local, and only known within the function. 

function y=fname(x) 

a=3;  % a exists only within (the context of) this function. 

y=a*x; 

� Exercise 12  

Create the function average and store it on disk as average.m. Remember about the comment 
lines. Check its usability by calling: 

help average 

avr1 = average(1:10); 

� 

Note: more than one output arguments are enclosed in [ ]. 

function [avr,sd] = mystat(x) 

% STAT Simple statistics. 

% Computes the average value and the standard deviation of a vector x. 

n   = length(x); 

avr = sum(x)/n; 

sd  = sqrt(sum((x-avr).^2)/(n-1)) 

return; 

Warning: The functions mean and std already exist in MATLAB. As long as a function name is used 
as variable name, MATLAB cannot perform that function. Many other, easily appealing names, such 
as sum or prod are reserved by MATLAB functions, so be careful when choosing your names. Hint: 
personalize your variables (e.g. tu_mean). 

When controlling the proper use of parameters use the function error. It displays an error message, 
stops function execution and returns to the command environment. 

function y = mytest(x) 

% COMMENT 

if (x >= 1) 

   error (‘x must be smaller than 1’); 

Syntax 

The first line must be 
the function definition 

Output argument Function name Input argument 

       comment 

function body 

function y = mynorm (v) 

% MYNORM 

% This function calculates the Euclidean- or L2-norm of a vector. 

% Square the value of the elements of v, 

% and calculate the root of the sum. 

y = sqrt(sum(v.^2)); 
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end 

% function body 

return; 

 

3.3 Workspace issues 

The workspace is an environment at a certain time. If you design a function, you create your own 
workspace at the time of execution. 

3.3.1 Local and global variables 

Each m-file function has access to a part of memory separate from MATLAB’s workspace. This is 
called the Function Workspace. This means that each m-file function has its own local variables, 
which are separate from those of other functions and from the (general) workspace. To understand it 
better analyze the following diagram: 

 

 

 

 

 

 

 

 

 

At the time of executing the myfun function in the MATLAB workspace, variables a and b are 
available. The variables a and b are copied to the variables x and y via the function parameters x and 
y of the function. The variables x, y and z are visible only in the function myfun. The function 
result available in z is copied into the newly created variable c in the MATLAB workspace. 

3.3.2 Special function variables 

Each function has two internal variables: nargin - the number of function input arguments that 
were used to call the function and nargout - the number of output arguments. Analyze the 
following function: 

function [out1] = checkarg (in1,in2,in3) 

% CHECKARG Demo on using the nargin and nargout variables. 

if (nargin ~= 3) 

  disp(‘wrong number of arguments’); 

  return;   % leave the function early 

end 

s = in1 + in2 + in3; 

if (nargout == 0) 

  return; % leave the function early 

end 

out1 = s; 

3.4 Scripts vs. functions 

The most important difference between a script and a function is that all script variables are 
externally accessible (i.e. in the MATLAB workspace), whereas function variables are not. Therefore, 
a script is a good tool for documenting work, designing experiments and testing. In general, create a 
function to solve a given problem for an arbitrary value of the parameters. When using a function, 
only the input and output variables are shared in the MATLAB workspace: this makes is possible to 
create your own function workspace hiding the variables in a function from the MATLAB workspace. 
Use a script to run functions for specific parameters required by the assignment. 

 

 

>> a = -1 

>> b = 20; 

>> c = myfun(a,b)  

MATLAB workspace 

a and b are copied into x and y 

myfun workspace 

function z = myfun(x,y) 

… 

z = x + cos(x-y) 

z is copied into c 
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4 Mathematics with vectors and matrices in MATLAB 

The basic element of MATLAB is a matrix with dimensions n x k (number of rows  x  number of 
columns) (see section 4.2). Special cases are: 

• If n = k = 1 the element is a scalar (a single number) 

• For k = 1 the element is a column vector; for n = 1 this is a row vector. 

Note that MATLAB may behave differently depending on the input, whether it is a number, a vector 
or a 2-D matrix. 

Dimensions of matrices do not have to be entered explicitly. They are derived from the input.  

4.1 Vectors 

Row vectors are lists of numbers separated either by commas or by spaces. They are examples of 
simple arrays. Their entries are referred to as elements or components. The entries must be enclosed 
in brackets [ ]. The number of entries is known as the length of the vector (the command length 
exists as well).  

>> v = [-1 sin(3) 7] % ALSO v = [-1, sin(3), 7] 

v = 

   -1.0000    0.1411    7.0000 

>> length(v) 

ans = 

   3 

>> v(2)    % between parentheses(): indices 

ans = 

   0.1411 

Note: The first element v(1) = –1 has index=1; use index>0 because v(0) does not exist! 

A vector can be multiplied by a scalar, or added to (or subtracted from) another vector with the same 
length, or a (scalar) number can be added to (or subtracted from) every component of a vector. All 
these operations are carried out element by element. Vectors can also be built from already existing 
ones. 

>> v = [-1 2 7]; w = [2 3 4]; 

>> z = v + w    % an element-by-element sum 

z = 

     1     5    11 

>> vv = v + 2    % add 2 to all elements of vector v 

vv = 

     1     4     9 

>> t = [2*v  -w]   % note the use of brackets 

t = 

    -2     4    14    -2    -3    -4 

>> u =  2*v  -w           

u = 

    -4     1    10   % note difference with previous example! 

>>   

A particular element of a vector can be manipulated as well. 

>> v(2) = -1    % change the 2nd element of v 

v = 

    -1    -1     7 

4.1.1 Colon notation and extracting parts of a vector 

The colon (:) notation provides an important shortcut, used when producing row vectors (see Table 4 
and help colon): 

>> 2:5                  % Start:Step:End  or  Start:End 

ans =  

     2   3   4   5 

 

! 
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>> -2:3     % Equal to -2:1:3 

ans =  

    -2  -1   0   1   2   3 

In general, first:step:last produces a vector of elements with as first value first, incrementing 
every next element by step until it reaches last: 

>> 0.2:0.5:2.4 

ans = 

    0.2000    0.7000    1.2000    1.7000    2.2000 

>> -3:3:10 

ans = 

    -3     0     3     6     9 

>> 1.5:-0.5:-0.5    % a negative step is also possible 

ans = 

    1.5000    1.0000    0.5000         0   -0.5000 

>>  

Parts of a vector can be extracted by using a colon notation: the indices are enclosed in parentheses 
(): 

>> r = [-1:2:6 2 3, -2] % Note inconsistent use of commas 

r = 

    -1     1     3     5     2     3    -2 

>> r(3:6)    % get elements of r which are on the positions from 3 to 6 

ans = 

     3     5     2     3 

>> r(1:2:5)   % get elements of r which are on positions 1, 3 and 5  

ans = 

    -1     3     2 

A very useful concept in Matlab is demonstrated in the following command: 

>> r(5:-1:2)   % what will you get here?  

For example x(1:2:end)=x(1:2:end)+11 implements xi+11 for i=1, 3, … 

4.1.2 Column vectors and transposing 

To create a column vector, you should separate entries by new lines or by a semicolon (;). An 
alternative is by transposing a row vector: 

>> z = [1 

7 

7] 

z = 

     1 

     7 

     7 

>> u = [-1; 3; 5] 

u =  

    -1 

     3 

     5 

The same operations as on row vectors can be performed on column vectors. However, you cannot, 
for example add a column vector to a row vector. To do that, you need an operation called 
transposing, which converts a column vector into a row vector and vice versa: 

>> u'    % u is a column vector and u’is a row vector 

ans = 

    -1     3     5 

>> v = [-1 2 7];  % v is a row vector 

>> u + v   % you cannot add a column vector u to a row vector v 

??? Error using ==> + 

Matrix dimensions must agree. 
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>> u' + v    % row vector 

ans = 

    -2     5    12 

>> u + v'    % column vector 

ans = 

    -2 

     5 

    12 

If z is a complex vector, then z’ gives the conjugate transpose of z, e.g.: 

>> z = [1+2i, -1+i] 

z = 

   1.0000 + 2.0000i  -1.0000 + 1.0000i 

>> z'    % this is the conjugate transpose 

ans = 

   1.0000 - 2.0000i 

  -1.0000 - 1.0000i 

>> z.'    % this is the traditional transpose 

ans = 

   1.0000 + 2.0000i 

  -1.0000 + 1.0000i 

4.1.3 Product, division and powers of vectors 

You can now compute the inner product between two vectors x and y of the same length, in a simple 
way: 

>> u = [-1; 3; 5];  % a column vector 

>> v = [-1; 2; 7];  % another column vector 

>> u * v    % you cannot multiply a column vector with a column vector 

??? Error using ==> * 

Inner matrix dimensions must agree. 

>> u' * v  % this is the inner product (of a row- and a column-vector!) 

ans = 

    42 

Another way to compute the inner product is by the use of the dot product, i.e., ‘.*’, which performs 
element wise multiplication. For two vectors x and y, of the same length, it is defined as a vector , 
thus, the corresponding elements of two vectors are multiplied. For instance: 

>> u .* v % this is an element-by-element multiplication, of similar vectors 

ans = 

     1 

     6 

    35 

>> sum(u.*v) % this is another way to compute the inner product 

ans = 

    42 

>> z = [4 3 1]; % z is a row vector 

>> sum(u'.*z)  % this is the inner product 

ans = 

    10 

>> u'*z'   % since z is a row vector, u’*z’ is the inner product 

ans = 

    10 

Note that: 

>> u*z 

ans = 

    -4    -3    -1 

    12     9     3 

    20    15     5 
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You can now easily tabulate values of a function for a given list of arguments. For instance: 

>> x = 1:0.5:4; 

>> y = sqrt(x) .* cos(x) 

y = 

    0.5403    0.0866   -0.5885   -1.2667   -1.7147   -1.7520   -1.3073 

Mathematically, it is not defined how to divide one vector by another. In MATLAB, however, the 
operator ./ is defined to perform an element-by-element division. It is, therefore, defined (only) for 
vectors of the same size and type: 

>> x = 2:2:10 

x = 

     2     4     6     8    10 

>> y = 6:10 

y = 

     6     7     8     9    10 

>> x./y 

ans = 

    0.3333    0.5714    0.7500    0.8889    1.0000 

>> z = -1:3 

z = 

    -1     0     1     2     3 

>> x./z   % division 4/0, resulting in Inf 

Warning: Divide by zero. 

ans = 

   -2.0000       Inf    6.0000    4.0000    3.3333 

>> z./z   % division 0/0, resulting in NaN 

Warning: Divide by zero. 

ans = 

     1   NaN     1     1     1 

The operator ./ can also be used to divide a scalar by a vector: 

>> x = 1:5; 2/x % this is not possible 

??? Error using ==> / 

Matrix dimensions must agree. 

 

>> 2./x   % but this is! 

ans = 

    2.0000    1.0000    0.6667    0.5000    0.4000 

� Exercise 13  

Get acquainted with operating on row and column vectors. Perform, for instance: 

• Create a vector consisting of the even numbers between 21 and 47. 

• Let x = [4 5 9 6]. 

• Subtract 3 from each element 

• Add 11 to the odd-index elements. 

• Compute the square root of each element. 

• Raise each element to the power 3. 

• Given a vector t, write down the MATLAB expressions that will compute: 

• ln(2 + t + t2) 

• cos2 (t) - sin2 (t) 

• et (1 + cos(3t)) 

• tan-1(t) 

Test them for t = 1 : 0.2 : 2. 
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Given x = [2 1 3 7 9 4 6], explain what the following commands do (note that x(end) points to the 
last element of x): 

x(3) 

x(1:7) 

x(1:end-1) 

x(2:2:6) 

x(6:-2:1) 

x(end-2:3:2) 

sum(x) 

mean(x) 

min(x) 

Let x = [1 +3i, 2 -2i] be a complex vector. Check the following expressions: 

x’ 

x.’ 

x * x’ 

x * x.’ 

 

� 

� Exercise 14  

Use the knowledge on computing the inner product to find the Euclidean length of the vector 

x = [2 1 3 7 9 4 6].  

The angle between two column vectors is defined (by the ‘cosine rule’) as:  cos
|| |||| ||

T
x y

x y
α = . 

Compute the angle between the vectors (note the difference between [3 2 1] and [3;2;1]): 

x = [3;2;1] and y=[1;2;3] 

x = [1:5] and y = [6:10] � 

 

 

MATLAB Command Result 

A(i,j) Aij 

A(:,j) jth column of A 

A(i,:) íth row of A 

A(k:l,m:n) (l – k+i) x (n – m + 1) matrix with elements Aij with ,k i l m j n≤ ≤ ≤ ≤  

v(i:j) ‘vector-part’ vi,vi+1,….,vj of vector v 

Table 4, Manipulation of (groups of) matrix elements 

 

MATLAB Command Result 

sin(4) sin(4) is approximately -0.7568 

Sin 4 sin 4 = sin(52) = 0.9866: because 4 is represented by ASCII 52. 

x = rank(A) x becomes the rank of matrix A 

x = det(A) x becomes the determinant of matrix A 

x = size(A) x becomes a  row-vector with 2 elements: the number of rows and columns of A 

x = trace(A) x becomes the trace (sum of diagonal elements) of matrix A 

x = norm(v) x becomes the Euclidean length of vector v 

 

MATLAB Command Result 

C= A + B, C= A - B addition, subtraction of two (similar) matrices 

C = A * B multiplication of two matrices 

C = A .* B ‘element-by-element’ multiplication (A and B are similar) 

C = A ^ B power of a matrix (with B scalar: can also be used for A-1). 

C = A .^ k ‘element-by-element’ power of a matrix; k is an integer 

C = A’ the transpose of a matrix: AT 

C = A ./ B ‘element-by-element’ division (A and B are similar), reciprocal: y=1 ./ x 

X = A \ B finds the solution in the least squares sense to the system of equations AX=B 

X = B / A finds the solution of XA = B, analogous to the previous command 
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MATLAB Command Result 

C = inv(A) C is the inverse of A 

L = eig(A) L is a vector containing the (possibly complex) eigenvalues of a square matrix A 

[X,D] = eig(A) produces a diagonal matrix D of eigenvalues and a full matrix X whose 
columns are the corresponding eigenvectors of A 

S = svd(A) S is a vector containing the singular values of A 

[U,S,V] = svd(A) S is a diagonal matrix with nonnegative diagonal elements in decreasing 
order; columns of U and V are the accompanying singular vectors 

 

MATLAB Command Result 

x= linspace(a,b,n) x is a vector of n equally spaced points between (and including) a and b 

x= logspace(a,b,n) generates a vector x starting at 10a and ending at 10b containing n values 

A = eye(n) A is an n x n identity matrix 

A = zeros(n,m) A is an n x m matrix with zeros (default m = n) 

A = ones(n,m) A is an n x m matrix with ones (default m = n) 

A = diag(v) A is an n x n matrix with elements v1, v2, ..., vn on the diagonal 

X = tril(A) X is the lower triangular part of A 

X = triu(A) X is the upper triangular part of A 

A = rand(n,m) A is an n x m matrix with elements uniformly distributed between 0 and 1 

A = randn(n,m) ditto - with elements standard normal distributed 

 

MATLAB Command Result 

v = max(A) v is a row vector with the maximum value of the elements in each 
column of A (if A is a vector, v is the maximum of all elements)  

v=min(A), v=sum(A) ditto  - with minimum, ditto  - with sum 

4.2 Matrices 

Row and column vectors are special types of matrices. An n x k matrix is a rectangular array of 
variables having n rows and k columns. Defining a matrix in MATLAB is similar to defining a vector. 
The generalization is straightforward, if you see that a matrix consists of row vectors (or column 
vectors). Commas or spaces are used to separate elements in a row, and semicolons are used to 
separate individual rows. Examine the definition of the matrix: 

1 2 3

A 4 5 6

7 8 9

 
 

=  
  

 

>> A = [1 2 3; 4 5 6; 7 8 9] % row by row input 

A = 

     1     2     3 

     4     5     6 

     7     8     9 

Other examples are: 

>> A2 = [1:4; -1:2:5] 

A2 = 

     1     2     3     4 

    -1     1     3     5 

>> A3 = [1 3 

        -4 7] 

A3 = 

     1     3 

    -4     7 
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As stated earlier (see 4.0), a row vector is a 1 x k matrix and a column vector is an n x 1 matrix. 
Transposing a vector changes it from a row to a column or the other way around. This idea can be 
extended to a matrix, where transposition interchanges rows with the corresponding columns, as in 
the example 

>> A2 

A2 = 

     1     2     3     4 

    -1     1     3     5 

>> A2' % transpose of A2 

ans = 

     1    -1 

     2     1 

     3     3 

     4     5 

>> size(A2) % returns the size (dimensions) of A2: 2 rows, 4 columns 

ans = 

     2     4 % two rows, four columns 

>> size(A2') 

ans = 

     4     2 

4.2.1 Special matrices 

There is a number of built-in matrices of size specified by the user (see Table 4). A few examples are 
given below: 

>> E = []     % an empty matrix of 0-by-0 elements! 

E = 

     [] 

>> size(E) 

ans = 

     0     0 

>> I = eye(3)    % the 3-by-3 identity matrix 

I = 

     1     0     0 

     0     1     0 

     0     0     1 

>> x = [2; -1; 7]; I*x  % I is such that for any 3-by-1 x holds I * x = x 

ans = 

     2 

    -1 

     7     % create a diagonal matrix with r on the diagonal 

>> r = [1 3 -2]; R = diag(r) 

R = 

     1     0     0 

     0     3     0 

     0     0    -2 

>> A = [1 2 3; 4 5 6; 7 8 9]; 

>> diag(A)    % extracts the diagonal entries of A 

ans = 

     1 

     5 

     9 

 

>> B = ones(3,2) 

B = 

     1     1 

     1     1 

     1     1 
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>> C = zeros(size(B'))  % a matrix of all zeros of the size given by B’ 

C =  0     0     0 

     0     0     0 

>> D = rand(2,3)  % a matrix of random numbers; you will get a different one! 

D = 

    0.9501    0.6068    0.8913 

    0.2311    0.4860    0.7621 

>> v = linspace(1,2,4) % a vector is also an example of a matrix 

v = 

    1.0000    1.3333    1.6667    2.0000 

4.2.2 Building matrices and extracting parts of matrices 

It is often needed to build a larger matrix from smaller ones: 

>> x = [4; -1], y = [1 3] 

x = 

     4 

    -1 

y = 

    1     3 

>> X = [x y'] % X consists of the columns x and y’ 

X = 

     4     1 

    -1     3 

>> T = [ -1 3 4 ; 4 5 6]; t = 1:3; 

>> T = [T; t]  % add to T a new row, namely the row vector t 

T = 

    -1     3     4 

     4     5     6 

     1     2     3 

>> G = [1 5; 4 5; 0 2]; % G is a matrix of size 3 by 2; check size(G) 

>> T2 = [T G] % concatenate two matrices 

T2 = 

    -1     3     4     1     5 

     4     5     6     4     5 

     1     2     3     0     2 

>> T3 = [T; G ones(3,1)] % G is 3-by-2, T is 3-by-3 

T3 = 

    -1     3     4 

     4     5     6 

     1     2     3 

     1     5     1 

     4     5     1 

     0     2     1 

>> T3 = [T; G']; % this is also possible; what do you get here? 

>> [G' diag(5:6); ones(3,2) T] % you can concatenate matrices 

ans = 

     1     4     0     5     0 

     5     5     2     0     6 

     1     1    -1     3     4 

     1     1     4     5     6 

     1     1     1     2     3 

 

A part can be extracted from a matrix in a similar way as from a vector. Each element in the matrix 
is indexed by a row and a column to which it belongs. Mathematically, the element from the i-th 
row and the j-th column of the matrix A is denoted by Aij; MATLAB provides the A(i,j) notation 
(syntax). 
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>> A = [1:3; 4:6; 7:9] 

A = 

     1     2     3 

     4     5     6 

     7     8     9 

>> A(1,2), A(2,3), A(3,1) 

ans = 

     2 

ans = 

     6 

ans = 

     7 

>> A(4,3)     % this is impossible: A is a 3-by-3 matrix! 

???  Index exceeds matrix dimensions. 

>> A(2,3) = A(2,3) + 2*A(1,1) % change the value of A(2,3) 

A = 

     1     2     3 

     4     5     8 

     7     8     9 

It is easy to extend a matrix automatically. For the matrix A it can be done e.g. as follows: 

>> A(5,2) = 5   % assign 5 to the position (5,2); the unspecified 

     % elements are initialized to zero 

A =  

     1     2     3 

     4     5     8 

     7     8     9 

     0     0     0 

     0     5     0 

Different parts of the matrix A can now be extracted: 

>> A(3,:) % extract the 3rd row of A 

ans = 

     7     8     9 

>> A(:,2) % extract the 2nd column of A 

ans = 

     2 

     5 

     8 

     0 

     5 

>> A(1:2,:) % extract the 1st and 2nd rows of A 

ans = 

     1     2     3 

     4     5     8 

>> A([2,5],1:2) % extract a part of A 

ans = 

     4     5 

     0     5 

If needed, the other zero elements of the matrix A can also be defined, by e.g.: 

>> A(4,:) = [2,1,2];  % assign vector [2, 1, 2] to the 4th row of A 

>> A(5,[1,3]) = [4,4];  % assign: A(5,1) = 4 and A(5,3) = 4 

>> A      % how does the matrix A look like now? 

 

As you have seen in the examples above it is possible to manipulate (groups of) matrix-elements 
(variables). The commands are shortly explained in Table 4. 
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The concept of an empty matrix [ ] is also very useful in MATLAB. For instance, a few columns or 
rows can be removed from a matrix by assigning an empty matrix to it. Try for example: 

>> C = [1 2 3 4; 5 6 7 8; 1 1 1 1]; 

>> D = C; D(:,2) = []  % now a copy of C is in D; remove the 2nd column of D 

>> C ([1,3],:) = []  % remove the rows 1 and 3 from C 

 

� Exercise 15  

Clear all variables. Define the matrix: A = [1:4; 5:8; 1,1,1,1]. Predict and check the result of: 

x = A(:,3) 

B = A(1:3,2:2) 

A(1,1) = 9 + A(2,3) 

A(2:3,1:3) = [0 0 0;0 0 0] 

A(2:3,1:2) = [1 1; 3 3] 

Y = A(3:3,1:4) 

A = [A; 2 1 7 7; 7 7 4 5] 

C = A([1 3],2) 

D = A([2,3,5],[1,3,4]) 

D(2,:) = []� 

 

� Exercise 16  

Let A = [2 7 9 7; 3 1 5 6; 8 1 2 5]. Explain the results or perform the following commands: 

A’ 

A(1,:)’ 

A(:,[1,4]) 

A([2,3],[3,1]) 

reshape(A,2,6) 

A(:) 

flipud(A) 

fliplr(A) 

[A; A(end,:)] 

[A; A(1:2,:)] 

sum(A) 

sum(A)’ 

mean(A) 

mean(A’) 

sum(A,2) 

mean(A,2) 

min(A) 

max(A’) 

min(A(:,4)) 

[min(A)’,max(A)’] 

max(min(A)) 

[[A;sum(A)][sum(A,2);sum(A(:))]] 

• assign even-numbered columns of A to a matrix B 

• assign the odd numbered rows to a matrix C 

• convert A into a 4-by-3 matrix 

• compute the reciprocal of each element of A 

• compute the square-root of each element of A 

• remove the second column of A 

• add a row of all 1’s at the beginning and at the end 

• swap the 2nd row with the last row � 

4.2.3 Operations on matrices 

Table 4 shows some frequently used matrix operations and functions. The important ones are dot 
operations on matrices, matrix-vector products and matrix-matrix products. In the class of the dot 
operations, there are dot product, dot division and dot power. These operations work as for vectors: 
they address matrices in the element-by-element way, therefore they can be performed on matrices 
of the same sizes. They also allow for scalar-matrix operations. For the dot product or division, 
corresponding elements are multiplied together or divided one by another. A few examples of basic 
operations are provided below: 

>> B = [1 -3 3; 4 0 7] 

B = 

     1    -3     3 

     4     0     7 

>> B2 = [1 2 ; 5 1 ; 5 6]; 

>> B = B + B2' % add two matrices; why B2’is needed instead of B2? 

B = 

     2     2     8 

     6     1    13 

 

>> B-2 % subtract 2 from all elements of B 

ans = 

     0     0     6 

     4    -1    11 
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>> B./4 % divide all elements of the matrix B by 4 

ans = 

    0.5000    0.5000    2.0000 

    1.5000    0.2500    3.2500 

>> 4/B % this is not possible 

??? Error using ==> / 

Matrix dimensions must agree. 

>> 4./B % this is possible; equivalent to: 4.*ones(size(B))./B 

ans = 

    2.0000    2.0000    0.5000 

    0.6667    4.0000    0.3077 

>> C = [1 -1 4; 7 0 -1]; 

>> B .* C % multiply element-by-element 

ans = 

     2    -2    32 

    42     0   -13 

>> ans.^3 - 2 % do for all elements: raise to the power 3 and subtract 2 

ans = 

           6         -10       32766 

       74086          -2       -2199 

>> ans ./ B.^2 % element-by-element division 

ans = 

  1.0e+003 * 

    0.0015   -0.0025    0.5120 

    2.0579   -0.0020   -0.0130 

>> r = [1 3 -2];  

>> r * B2  % this is a legal operation: r is a 1-by-3 matrix and B2 is 

   % a 3-by-2 matrix; B2 * r, however, is an illegal operation 

ans =   

     6    -7 

Concerning the matrix-vector and matrix-matrix products, two things should be reminded. First, an 
n x k matrix A (having row index i=1:n and column index j=1:k ) can be multiplied by a k x 1 
(column) vector x, resulting in a n x 1 (column) vector y, i.e.: Ax = y such that: 

1
A

k

i ip pp
y x

=
=∑  

Multiplying a 1 x n (row) vector x by a matrix A, results in a 1 x k (row) vector: 

1
A

n

j p pjp
y x

=
=∑  

Secondly, an n x k matrix A can be multiplied by a matrix B, only if B has k rows, i.e. B is k x m 
(with m an arbitrary value). As a result, you get an n x m matrix C, such that A B = C, where: 

1
C A B

k

ij ip pjp=
=∑  

>> b = [1 3 -2]; 

>> B = [1 -1 3; 4 0 7] 

B = 

     1    -1     3 

     4     0     7 

>> b * B % not possible: b is 1-by-3 and B is 2-by-3 

??? Error using ==> * 

Inner matrix dimensions must agree. 

>> b * B' % this is possible: a row vector multiplied by a matrix 

ans = 

    -8   -10 

>> B' * ones(2,1) 
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ans = 

     5 

    -1 

    10 

>> C = [3 1; 1 -3]; 

>> C * B 

ans = 

     7    -3    16 

   -11    -1   -18 

>> C.^3 % this is element-by-element power 

ans = 

    27     1 

     1   -27 

>> C^3 % this is equivalent to C*C*C 

ans = 

    30    10 

    10   -30 

>> ones(3,4)./4 * diag(1:4) 

ans = 

    0.2500    0.5000    0.7500    1.0000 

    0.2500    0.5000    0.7500    1.0000 

    0.2500    0.5000    0.7500    1.0000 

 

� Exercise 17  

Given: vectors x = [1 3 7] and y = [2 4 2], and matrices A = [3 1 6; 5 2 7] and B = [1 4;7 8;2 2], 
determine which of the following statements will correctly execute (and if not, try to understand 
why); also provide the result: 

x + y 

x + A 

x’ + y 

A – [x’y’] 

[x; y] + A 

[x ; y’] 

[x; y] 

A – 3 

A + B 

B’+ A 

B * A 

A. * B 

A’ .* B 

2 * B 

2 .* B 

B ./ x’ 

B ./ [x’x’] 

2 / A 

ones(1,3) * A 

ones(1,3) * B � 

 

� Exercise 18  

Let A be a random 3x3 matrix, and b a random 3x1 vector (use the command randn). Given that Ax 
= b, then x = A-1b. Find x. Explain what the difference is between the operators \, / and the 
command inv (look at Table 4). Having found x, check whether Ax – b is close to a zero vector. � 

5 Text and cell arrays 

5.1 Character strings 

Although MATLAB mainly works with numbers, it might occasionally be necessary to operate on 
text. Text is saved as a character string, i.e., a vector of ASCII values which are displayed as their 
character string representation. Since text is a vector of characters, it can be addressed in the same 
way as any vector. For example: 

>> t = 'This is a character string' 

t = 

This is a character string 

 

>> size(t) 

ans = 

     1    26 
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>> whos 

  Name      Size         Bytes  Class 

  ans       1x2             16  double array 

  t         1x26            52  char array 

Grand total is 28 elements using 68 bytes 

>> t(10:19) 

ans = 

 character 

>> t([2,3,10,17])  % note brackets [ ] inside parentheses ( ) 

     % to denote collection of indices 

ans = 

hi t 

To see the underlying ASCII representation, the string has to be converted using the command 
double or abs: 

>> double(t(1:12)) 

ans = 

    84   104   105   115    32   105   115    32    97    32    99   104 

The function char provides the reverse transformation: 

>> t(16:17) 

ans = 

ct 

>> t(16:17)+3 

ans = 

   102   119 

>> t(16:17)-3 

ans = 

    96   113 

>> char(t(16:17)-2) 

ans = 

ar 

� Exercise 19  

Perform the commands described. Use string t to form a new string u that contains the word 
“character” only. Convert string u to form the same word spelled backwards, i.e., u1 = 

‘retcarahc’. � 

With findstr, a string can be searched for a character or a combination of characters. Some 
examples on the use of different string functions are given below: 

>> findstr(t, 'c') 

ans = 

    11    16 

 

>> findstr(t, 'racter') 

ans = 

    14 

>> findstr(t, u) 

ans = 

    11 

>> strcat(u,u1) 

ans = 

characterretcarahc 

>> strcmp(u,u1) 

ans = 

     0 

>> q = num2str(34.35) 

q = 

34.35 
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>> z = str2num(q) 

z = 

   34.3500 

 

>> whos q z 

  Name      Size         Bytes  Class 

  q         1x5             10  char array 

  z         1x1              8  double array 

Grand total is 6 elements using 18 bytes 

>> t = str2num('1 -7 2') 

t = 

     1    -7     2 

>> t = str2num('1 - 7 2') 

t = 

    -6     2 

>> A = round(4*rand(3,3))+0.5; 

>> ss = num2str(A) 

ss = 

4.5         2.5         2.5 

1.5         4.5         0.5 

2.5         3.5         3.5 

>> whos ss 

  Name      Size         Bytes  Class 

  ss        3x27           162  char array 

Grand total is 81 elements using 162 bytes 

>> ss(2,1), ss(2,1:27) 

ans = 

1 

ans = 

1.5         4.5         0.5 

>> ss(1:2,1:3) 

ans = 

4.5 

1.5 

 

� Exercise 20  

Perform the commands shown in the example above. Define another string, e.g. s = ’Nothing 
wastes more energy than worrying’ and exercise with findstr. � 

� Exercise 21  

Become familiar with num2str and str2num. Check, e.g., what happens with ss = num2str([1 2 
3; 4 5 6]) or q = str2num(‘1 3.25; 5 5.5’). Analyze also the commands str2double and 
int2str (use help). � 

5.2 Text input and output 

The input command can be used to prompt (ask) the user for numeric or string input: 

>> myname = input(‘Enter your name: ‘, ’s’); 

age = input(‘Enter your age: ’); 

There are two common text output functions: disp and fprintf. The disp function only displays 
the value of one parameter, either a numerical array or a string (the recognition is done 
automatically). For example: 

>> disp(’This is a statement.’) % a string 

This is a statement 
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>> disp(rand(3)) 

    0.9501    0.4860    0.4565 

    0.2311    0.8913    0.0185 

    0.6068    0.7621    0.8214 

The fprintf function (familiar to C programmers) is useful for writing data to a file or screen when 
precise formatting is important. Try for instance (an explanation will follow): 

>> x = 2; 

>> fprintf('Square root of %g is %8.6f.\n' , x, sqrt(x)); 

Square root of 2 is 1.414214. 

Formally, fprintf converts, formats and prints its arguments to a file or displays them on screen 
according to a format specification. For displaying on screen, the following syntax is used: 

fprintf (format, a, ...) 

The format string contains ordinary characters, which are copied to the output, and conversion 
specifications, each of which converts and prints the next successive argument to fprintf. Each 
conversion specification is introduced by the character ’%’ and ended by a conversion character. 
Between the ’%’ and the conversion character there may appear: 

• a minus sign; controlling the alignment within the field defined. 

• a digit string specifying a minimum field length; The converted number will be printed in the 
field at least this wide, and wider if necessary. 

• a period which separates the field width from the next digit string; 

• a digit string - the precision which specifies the maximum number of characters to be printed 
from a string or the number of digits printed after the decimal point of a single or double type. 

Format specification is given below in terms of the conversion characters and their meanings: 

Command The argument 

d is converted into decimal notation; 

u is converted into unsigned decimal notation 

c is taken to be a single character; 

s is a string 

e is taken to be a single or double and converted into decimal notation of the form: 

[–]m.nnnnnnE[±]xx, where the length of n’s is specified by the precision; 

f is taken to be a single or double and converted into decimal notation of the form: 

[–]mmm.nnnnn, where the length of n’s is specified by the precision; 

g is specified by e or f, whichever is shorter; non-significant zeros are not printed; 

Table 5, Format specification 

The special formats \n, \r, \t, \b can be used to produce next line (i.e. makes sure that the next 
command or output will be written on the next line), carriage return, tab and backspace respectively. 
Use \\ to produce a backslash character and %% to produce the percent character. 

Analyze the following example: 

>> fprintf('Look at %20.6e!\nSee help fprintf', 1000*sqrt(2)) 

Look at        1.414214e+003! 

See help fprintf 

>> fprintf('Look at %-20.6e!See help fprintf\n', 1000*sqrt(2)) 

Look at 1.414214e+003       !See help fprintf 

For both commands, the minimum field length is 20 and the number of digits after the decimal point 
is 6. In the first case, the value of 1000*sqrt(2) is padded on the right, in the second case, because of 
the ‘–’, it appears on the left. 

� Exercise 22  

Try to understand how to use the input, disp and fprintf commands. For instance, try to read a 
vector with real numbers using input. Then, try to display this vector, both by calling disp and 
formatting an output by fprintf . Make a few variations. Try the same with a string. � 
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� Exercise 23  

Study the following examples in order to become familiar with the fprintf possibilities and 
exercise yourself to understand how to use these specifications: 

>> str = 'life is beautiful'; 

>> fprintf('My sentence is: %s\n', str); % note the \n format 

My sentence is: life is beautiful 

>> fprintf('My sentence is: %30s\n', str); 

My sentence is:             life is beautiful 

>> fprintf('My sentence is: %30.10s\n', str); 

My sentence is:                     life is be 

>> fprintf('My sentence is: %-20.10s\n', str); 

My sentence is: life is be           

>>  

>> name = 'John'; 

>> age = 30; 

>> salary = 6130.50; 

>> fprintf('My name is %4s. I am %2d. My salary is $ %7.2f.\n', name, age, 
salary); 

My name is John. I am 30. My salary is $ 6130.50. 

>>  

>> x = [0, 0.5, 1]; y = [x; exp(x)]; 

>> fprintf('%6.2f  %12.8f\n',y); 

  0.00    1.00000000 

  0.50    1.64872127 

  1.00    2.71828183 

Observe that the fprintf command applies its format along columns until all elements of a matrix are 
processed. 

>> fprintf('%6.1e  %12.4e\n',y); 

0.0e+000   1.0000e+000 

5.0e-001   1.6487e+000 

1.0e+000   2.7183e+000 

>>  

>> x = 1:3:7; y = [x; sin(x)]; 

>> fprintf('%2d  %10.4g\n',y); 

 1      0.8415 

 4     -0.7568 

 7       0.657 

� 

Warning: fprintf uses its first argument to decide how many arguments follow and what their 
types are. If you provide a wrong type or there are not enough arguments, you will get nonsense for 
an answer. So, be careful with formatting your output. Look, e.g. what happens in the following case 
(age is not provided): 

>> fprintf('My name is %4s. I am %2d. My salary is $ %7.2f.\n', name, 
salary); 

My name is John. I am 6.130500e+003. My salary is $  

Remark: The function sprintf is related to fprintf, but writes to a string instead. Analyze the 
example: 

>> str = sprintf('My name is %4s. I am %2d. My salary is $ %7.2f.\n', name, 
age, salary) 

str = 

My name is John. I am 30. My salary is $ 6130.50. 
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� Exercise 24  

Define a string s = ’A woodchuck couldn’’t chuck any amount of wood because a 
woodchuck can’’t chuck wood, but if a woodchuck could chuck and would chuck 

wood, how much wood would a woodchuck chuck? Oh, shut up!’.  

Note: the symbol ’ within a string is represented by a double ’’. Exercise with findstr, i.e., find all 
appearances of the substring ’wood’, ’o’, ’uc’ or ’could’. Try to build a new string ss by 
concatenation of separate words in a few ways; use strcat, disp, sprintf or fprintf. � 

5.3 Cell arrays 

Cell arrays are arrays whose elements are cells. Each cell can contain any data, including numeric 
arrays, strings, cell arrays, etcetera. For instance, one cell can contain a string, another a numeric 
array, etc. Below, there is a schematic representation of an exemplar cell array: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell arrays can be built up by assigning data to each cell. The cell contents are accessed by brackets 
{}, e.g. 

>> A(1,1) = {[3 1 -7; 7 2 4; 0 -1 6; 7 3 7]}; 

>> A(2,1) = {'this is a text' }; 

>> B(1,1) = {'John Smith'}; B(2,1) = {35}; B(3,1) = {[5900 6000]} 

 

B =  

    'John Smith' 

    [        35] 

    [1x2 double] 

>> A(1,2) = {B}; % cell array B becomes one of the cells of A 

>> C(1,1) = {'Hi'}; C(2,1) = {[-1 0; 0 -1]}; C(1,2) = {[7,7]}; C(2,2) = 
{'Bye'}; 

>> A(2,2) = {C}; %cell array C becomes one of the cells of A 

>> A 

A =  

        [4x3 double]    {3x1 cell} 

    'this is a text'    {2x2 cell} 

>> A(2,2)  %access the cell but not the contents 

ans =  

    {2x2 cell} 

>> A{2,2}  %use {} to display the contents 

ans =  

    'Hi'            [1x2 double] 

    [2x2 double]    'Bye'        

 

cell 2,2 

‘Hi’ [7,7] 

-1 0 

0 -1 

‘Bye’ 

cell 2,3 

‘Living’ 

‘implies effort’ 

cell 2,1 

‘this is a text’ 

cell 1,2 

John Smith 

35 

5900 6000 

cell 1,1 

3   1  -7 

7   2   4 

0  -1   6 

7   3   7 

cell 1,3 

1 + 3i 
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>> A{2,2}(2,1) %take the (2,1) element of the cell A{2,2} 

ans = 

    -1     0 

     0    -1 

There are also two useful functions with meaningful names: celldisp and cellplot. Use help to 
learn more. 

The common application of cell arrays is the creation of text arrays. Consider the following 
example: 

>> Month = {'January';'February';'March';'April';'May';'June';'July';... 

'August';'September';'October';'November';'December'}; 

>> fprintf('It is %s.\n', Month{9}); 

It is September. 

� Exercise 25  

Exercise with the concept of a cell array, first by typing the examples presented above. Next create a 
cell array W with the names of week days, and, using the command fprintf, display on screen the 
current date with the day of the week. The goal of this exercise is also to use fprintf with a format 
for a day name and a date, in the spirit of the above example. � 

6 Control flow 

Since variables are updated by commands (e.g., b=10; c=b+1), the order in which the commands 
are executed is important. Control flow ensures that commands will be executed in a suitable order. 
This chapter deals with ways of composing commands to achieve different control flows. 

6.1 Expressions and logical expressions 

To create different control flows logical expressions are a means to decide which group of 
subcommands to execute. These expressions result in a logical value: TRUE or FALSE. In MATLAB 
the result of a logical expression is 1 if it is true (e.g., 1 == 2-1) and 0 if it is false.  

First check section 2.3 on MATLAB syntax. 

6.2 Sequential commands 

The most common control flow is the sequential composition of two (or more) commands: ‘C1; C2;’ 
denotes that command C1 is executed before command C2. 

6.3 Conditional commands 

A conditional command has a number of subcommands (each consisting of a sequential group of 
commands). Exactly one group of subcommands (starting with if, else, or elseif, and 
ending with else, elseif, or end) is selected for execution. The choice among the various 
candidate subcommands is based upon the truth-value yielded by a logical expression Elogical (e.g.  
a > b). In the example below the disp function if frequently used. 

 

 

 

 

 

 

 

 

 

 

  

if Elogocal 
 C1; 
else 

 C2; 
end 

Syntax 

if (a >= b) 
 max = a; 
 disp (‘a >= b’); 
else 

 max = b; 
 disp (‘b > a’); 
end 

Example 

if E1 
 C1;  % executed if E1 is True 
elseif E2 
 C2;  % executed if E2 is True 
else 

 C3;  % executed if no other 
   % expression is True 
end 

Syntax 
if (height > 190) 
 max = a; 
 disp (‘a >= b’); 
elseif (height > 170) 
 disp(‘tall’); 
elseif (height < 150) 
 disp (‘small’); 
else 

 disp (‘average’); 
end 

Example 
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� Exercise 26  

Create a script that asks for a number  and computes the drag coefficient C, depending on the 
Reynold’s number  (make use of elseif). The command input might be useful here (use help if 
needed). 

0.7

0, 0

24 / , (0,  0.1]

(24 / )(1 0.14 ), (0.1,  1000]

0.43, (1000,  500000]

0.19 80000 / , 500000

N

N N

C N N N

N

N N

≤


∈


= + ∈
 ∈


− >

 

Check whether your script works correctly. Compute the drag coefficient for e.g. N=-3e3, 0.01, 
56, 1e3, 1e6 (remember that e.g. 3e3 is a MATLAB notation of 3*103). � 

 

� Exercise 27  

Write a script that asks for an integer and checks whether it can be divided by 2 or 3. Consider all 
possibilities, such as: divisible by both 2 and 3, divisible by 2 and not by 3 etc. (use the command 
rem). � 

It is also possible to select a group of subcommands on the basis of values other than truth values 
(e.g., scalars or a string). The value yielded by the expression E must equal the value of one of the 
literals Li and then the corresponding subcommand Ci is chosen. 

 

 

 

 

 

 

 

� Exercise 28  

Assume that the months are represented by the numbers from 1 to 12. Write a script that asks you to 
provide a month and returns the number of days in that particular month. Alternatively, write a script 
that asks you to provide a month name (e.g. ’June) instead of a number. Use the switch-
construction. � 

� Exercise 29  

Write a MATLAB function that implements : 

 

 

 

 

 

 

Verify its functionality using  

• x=-1, x= 5, x=30, and x=56 � 

switch E 
 case L1 
  C1; % executed if L1 equals E 
 case {L2, L3, …} 
  C2; % executed if L2 or L3 equals E 
 otherwise 

  C3; % executed if no literal Li 
   % equals E 
end 

Syntax 
method = ‘lin’ 
switch method 
 case {‘lin’,’lin2’} 
  disp(’Method is linear.’); 
 case {‘near’} 
  disp(‘Method is nearest.’); 
 otherwise 

  disp(‘Unknown method.’); 
end 

Example 

if 0<x<7 
 y=4x 
elseif 7<x<55 
 y=-10x 
else 

 y=333 
end 

This is not MATLAB syntax 
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6.4 Iterative commands 

An iterative command (commonly known as a loop) has a subcommand (the loop body) that is to be 
executed repeatedly, and some kind of phrase that determines when iteration will cease. We can 
classify iterative commands according to whether the number of iterations is determined in advance 
(definite) or not (indefinite). 

6.4.1 Definite iteration 

Definite iteration is characterized by the use of a control variable. The loop body is executed with 
the control variable taking each of a predetermined sequence of values. This sequence of values is 
called the control sequence. 

note 1: the control sequence can be a vector. 

note 2: the step can have a negative value. 

 

 

 

 

 

 

 

In MATLAB, the for command is self-contained: control variables are created within the loop body. 
Thus the control variable has no value (a in the example) outside the loop (it does not exist). The 
loop body cannot cause an assignment to the control variable - it is in fact a constant! 

6.4.2 Indefinite iteration 

This concerns loops in which the number of iterations is not determined in advance. The while 
command consists of a loop body preceded by a truth-valued expression Elogical (the loop condition) 
that controls whether iteration is to be (started or) continued. 

note 1: The number of executions of a command can also be 0! 

note 2: if Elogical  is always true the loop will not have a (natural) end! 

 

 

 

 

 

 

 

Given two vectors x and y, an example use of the loop construction is to create a matrix A whose 
elements are defined, e.g. as Aij = xiyj. Enter the following commands in a script: 

n = length(x); m = length(y); 

for ii = 1:n 

  for jj = 1:m 

    A(ii,jj) = x(ii)*y(jj); 

  end 

end 

Now create A for x = [1 2 -1 5 -7 2 4] and y = [3 1 -5 7]. Note that A is of size n-by-m. The same 
problem can be solved by using two while loops: 

n = length(x); m = length(y);  ii = 1 % initialize ii 

while ii<=n 

  jj=1; % initialize jj 

for a = first : step : last 
 C1; 
end 

Syntax 

for  a = 0 : 0.5 : 4 
 disp(a^2) 
end 

Example 

for a = vector 
 C1; 
end 

Syntax 
v = [0 : 0.5 : 4]; 
for a = v 
 disp(a^2); 
end 

Example 

while Elogical 
 C1; 
end 

Syntax 
sum = 0; 
delta = 1; 
iter = 0; 
while(delta > eps) 
    sum = sum + delta; 
    delta = delta / 2; 
    iter = iter + 1; 
end 

disp(sum); disp(iter); 

Example 
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  while jj <= m 

    A(ii,jj) = x(ii)*y(jj); 

    jj=jj+1 % increment jj: it does not happen automatically! 

  end 

  ii=ii+1   % increment ii 

end 

 

� Exercise 30  

Use a loop construction to carry out the computations. Write short scripts. 

1. Given the vector x = [1 8 3 9 0 1], create a short set of commands that will: 

• add up the values of the elements (check with sum); 

• computes the running sum (for element ii, the running sum is the sum of the elements from 1 
to ii; check with cumsum). 

2. Given x = [4 1 6 -1 -2 2] and y = [6 2 -7 1 5 -1], compute matrices whose elements are created 
according to the following formulas: 

• ai = xi yi and add up the elements of a; 

• bij = xi/(2 + xi + yj); 

• cij = 1 / max (xi,yj); 

3. Determine the sum of the first 50 squared numbers with a control loop. 

4. Write a script to find the largest value n such that the sum:
3 3 31 2 ... n+ + + is less than 

1000. � 

6.5 Evaluation of logical and relational expressions in the control flow structures 

The relational and logical expressions may become quite complicated. It is not difficult to operate 
on them if you understand how they are evaluated. To explain this in more detail, let us consider the 
following example: 

if (~isempty(data)) & (max(data) < 5) 

  ... 

end 

This construction of the if-block is necessary to avoid comparison if data happens to be an empty 
matrix. In such a case you cannot evaluate the right logical expression and MATLAB returns an error. 
The & operator returns 1 only if both expressions: ~isempty(data) and max(data) < 5 are 
TRUE, and 0 otherwise. When data is an empty matrix, the next expression is not evaluated since 
the whole &-expression is already known to be false (lazy evaluation). The second expression is 
checked only if data is a non-empty matrix. Don’t forget to put logical expression units between 
brackets to avoid unexpected evaluations!  

 

� Exercise 31  

Consider the following example:. 

max_iter = 50; 

tolerance = 1e-4; 

iter = 0; 

xold = 0.1; 

x = 1; 

while (abs (x-xold) > tolerance) & (iter < max_iter) 

   xold = x; 

   x = cos(xold); 

   iter = iter + 1; 

end 
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This short program tries to solve the equation cos(x) = x (x is the solution found). Make the script 
solve_cos from the presented code. Note that the while-loop is repeated as long as both conditions 
are true. If either the condition (|x-xold| <= tolerance) or (iter >= max_iter) is fulfilled then the loop 
is quitted. Run the script solve_cos for different tolerance parameters, e.g. 1e-3, 1e-6, 1e-8, 
1e-10, etc. Use format long to check more precisely how much the found x is really different 
from cos(x). For each tolerance value check the number of performed iterations (iter value). �  

 

� Exercise 32  

Create the script solve_cos2, which is equal to the given, replacing the while-loop condition by:. 

while (abs (x-xold) > tolerance) | (iter < max_iter) 

Try to understand the difference and confirm your expectations by running solve_cos2. What 
happens to iter? � 

7 Visualization 

MATLAB can be used to visualize the results of an experiment. To that end, you should define your 
variables such that each of them contains all values of one parameter to plot. 

7.1 Simple plots 

With the command plot, a graphical display can be made. For a vector y, plot(y) draws the 
points [1,y(1)], [2,y(2), ..., [n, y(n)] and connects them with a straight line. plot(x,y) does the 
same for the points [x(1),y(1)], [x(2),y(2)], ..., [x(n),y(n)]. Note that x and y have to be both either 
row or column vectors of the same length (i.e., the same number of elements). 

The commands loglog, semilog and semilogy are similar to plot, except that they use either one 
or two logarithmic axes. Type the following commands, after predicting the result: 
>> x = 0:10; 
>> y = 2.^x; % the same as y = [1 2 4 8 16 32 64 128 256 512 1024] 
>> plot(x,y); % to get a graphic representation 
>> semilogy(x,y); % to make the y-axis logarithmic 

As you can see, the same figure is used for both commands. The previous function is removed as 
soon as the next is displayed. The command figure gives you an extra figure-window. Repeat the 
previous commands, but generate a new figure before plotting the second function, so that you can 
see both functions in separate windows. You can also switch back to a figure using figure(n), 
where n is its number. 

For plotting a graph of a function, it is important to sample the function sufficiently well, a much 
higher sampling than Nyquist sampling is required. 

 

>> x = [0 0.5 1];        % Nyquist sampling 

>> y = sin(2*pi*x); 

>> plot(x,y,’x-’); 

 

>> x = linspace(0,1,10); % coarse sampling 

>> y = sin(2*pi*x); 

>> plot(x,y,’x-’); 
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>> x = linspace(0,1,100);   % fine sampling 

>> y = sin(2*pi*x); 

>> plot(x,y,’x-’); 

 

 

 

 

 

 

The plot command uses a blue solid line by default. It is possible to change both the style and 
colour, e.g.: 

>> x = 0:0.4:3; y = sin(5*x); 

>> plot(x,y,’r--’) % produces a dashed red line.  

 

Symbol Colour Symbol Line style 

r red .,o point, circle 

g green * star 

b blue x,+ x-mark, plus 

y yellow - solid line 

m magenta -- dash line 

c cyan : dot line 

k black -. dash-dot line 

Table 6, Plot colours and styles 

The third argument of plot specifies the colour (optional) and the line style. Table 6 shows a few 
possibilities, help plot shows all. To add a title, grid and to label the axis, one uses: 

>> title(’Function y = sin(5*x)’); 

>> xlabel(‘x-axis’); 

>> ylabel(‘y-axis’); 

>> grid % remove grid by calling grid off 

 

� Exercise 33  

Make a plot connecting the coordinates: (2,6), (2.5, 18), (5,17.5), (4.2, 12.5) and (2,12) by a line. �  

  

� Exercise 34  

Plot the function y=sin(x) + x - x cos(x) in two separate figures for the intervals: 

0<x<30 and –100<x<100. Add a title and axis description. �  

7.2 Several functions in one figure 

There are different ways to draw several functions in the same figure-window. The first one uses the 
command hold on. After this command, all functions will be plotted in the same figure until the 
command hold off is used. When more than one function is plotted in a window, it is useful to use 
different symbols and colours. An example is: 

>> x1 = 1:.1:3.1; y1 = sin(x1); 

>> plot(x1 , y1, ‘md’);     % ‘d’ for diamond symbol 

>> x2 = 1:.3:3.1; y2 = sin(-x2+pi/3); 

>> hold on 

>> plot (x2,y2,’k*-.’) 

>> plot(x1,y1,’m-’) 
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>> hold off 

A second method to display a few functions in one figure is to extend the list of arguments handled 
by the plot command. The next command will produce the same output as the commands in the 
previous example. 

>> x1 = 1:.1:3.1; y1 = sin(x1); 

>> x2 = 1:.3:3.1; y2 = sin(-x2+pi/3); 

>> plot (x1, y1,‘md’, x2, y2,‘k*-.’, x1, y1,‘m-’) 

To make the axis better fitting the curves, perform 

>> axis([1,3.1,-1,1]) 

The same can be achieved by axis tight. It might be also useful to exercise with axis options (see 
help), e.g. axis on/of, axis equal, axis image or axis normal. A descriptive legend can be 
included with the command legend, e.g.: 

>> legend (‘sin(x)’, ‘sin(-x+pi/3’); 

It is also possible to produce a few subplots in one figure window. With the command subplot(p, 
r, figurenumber), the window can be horizontally and vertically divided into p x r subfigures, 
which are counted from 1 to pr, row-wise, starting from the top left. Note that the commands: plot, 
title, grid, etc. work only on the current subfigure. 

>> x = 1:.1:4; 

>> y1 = sin(3*x); 

>> y2 = cos(5*x); 

>> y3 = sin(3*x).*cos(5*x) 

>> subplot(2,2,1); plot(x,y1,’m-’); title(‘sin(3*x)’) 

>> subplot(2,2,2); plot(x,y2,’g-’); title(‘cos(5*x)’) 

>> subplot(2,1,2); plot(x,y3,’k-’); title(‘sin(3*x) * cos(5*x)’) 
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� Exercise 35  

Plot the functions f(x) = x, g(x) = x^3, h(x) = e^x and z(x) = e^(x^2)) over the interval [0,4] using 
both the normal and the log-log scales. Use an appropriate sampling to get smooth curves. Describe 
your plots by using the functions: xlabel, ylabel, title and legend. �  

  

Command Result 

grid on/off adds a grid to the plot at the tick marks or removes it 

axis([xmin xmax ymin ymax]) sets the minimum and maximum values of the axes 

box off/on  removes the axes box or shows it 

xlabel(‘text’)  plots the label text on the x axis 

subplot(2,2,1): if the plot window is a figure matrix with dimensions n x k (row x 
column) this would be the subfigure at the first position of a 2x2 matrix. 
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ylabel(‘text’)  plots the label text on the y axis 

title(‘text’)  plots a title above the graph 

text(x,y,‘text’)  adds text at the point (x,y) 

gtext(‘text’)  adds text at a manually (with the mouse) indicated point 

legend(‘fun1’,‘fun2’)  plots a legend box (move it with the mouse) 

legend off  deletes the legend box 

clf  clears the current figure 

subplot  creates a subplot in the current figure 

Table 7, Plot/print commands 

7.3 Printing 

Before printing a figure, you might want to add some information, such as a title, or change 
somewhat in the lay-out. Table 7 shows some of the commands that can be used. 

 

� Exercise 36  

Plot the functions y1 = sin(4x), y2 = x cos(x), y3 = sqrt(x) (x+1)^-1 for x = 1:0.25:10, and plot a 
single point (x,y) = (4,5), all in one figure. Use different colours and styles. Add a legend, labels for 
both axes and a title. Add also a text to the single point saying: ‘single point’. Change the minimum 
and maximum values of the axes such that one can look at the function y3 in more detail. � 

When you like the displayed figure you can print it to paper. The easiest way is to click File in the 
menu-bar and to choose Print. If you click OK in the print window, your figure will be sent to the 
printer indicated there. 

There also exists a print command, which can be used to send a figure to a printer or output it to a 
file. You can optionally specify a print device (i.e., an output format such as tiff or postscript) and 
options that control various characteristics of the printed file (i.e., which figure to print, etc.). You 
can also print to a file if you specify the file name. If you do not provide an extension, print adds 
one. Since there are many parameters they will not be explained here (click help print to learn 
more) instead, try to understand the examples: 

>> print -dwinc  % print current figure to current printer in colour 

>> print -f1 -deps myf.eps % print Figure no.1 to file myf.eps in black 

>> print -f1 -depsc myg.eps % print Figure no.1 to file myg.eps in colour 

>> print -dtiff myfile.tif % print current figure to file myfile.tif 

>> print -f2 -djpeg myfile.jpg % print Figure no.2 to the file myfile.jpg 

8 Numerical analysis 

Numerical analysis can be used whenever it is very difficult or impossible to determine the 
analytical solution. MATLAB can be used to find, for instance, the minimum, maximum or integral of 
a particular function. 

There are two ways to describe data with an analytical function: 

• curve fitting or regression; finding a smooth curve that best fits (approximates) the data 
according to a criterion (e.g., best least square fit). The curve does not have to go through any of 
the data points. 

• interpolation; the data are assumed to be error-free: desired is a way to describe what happens 
between the data points. In other words, given a finite set of points, the goal of interpolation is 
to find a function from a given class of functions (e.g. polynomials) which passes through the 
specified points. 

The figure below illustrates the difference between regression (curve fitting) and interpolation: 
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In this section we will briefly discuss some issues on curve fitting, interpolation, function 
evaluation, integration and differentiation. It is also possible to solve differential equations (see 
Matlab books mentioned in the Introduction or the Projects on Blackboard). 

8.1 Curve fitting 

MATLAB interprets the best fit of a curve as ‘least squares curve fitting’. The curves used are 
restricted to polynomials. Which the command polyfit any polynomial can be fitted to the data. 
polyfit (x,y,n) finds the coefficients of a polynomial of degree n that fits the data (finds the 
linear combination between x and y). Let’s start with finding a linear regression of some data: 

>> x = 0:10; 

>> y = [-0.10 .24 1.02 1.58 2.84 2.76 2.99 4.05 4.83 5.22 7.51] 

>> p = polyfit(x,y,1) % find the fitting polynomial of order 1 

p = 

    0.6772   -0.3914 

The output of polyfit is a row vector of the polynomial coefficients; the solution of this example is 
therefore y = 0.6772x – 0.3914. 

 

� Exercise 37  

Execute the above example. Plot the data and the fitted curve in a figure. Determine the 2nd and 9th 
order polynomial of these data as well, and display the solution in a figure. 

Hint: x1 = linspace(xmin, xmax, n); results in a vector with n elements evenly distributed 
from xmin till xmax. z = polyval(p,x1); calculates the values of the polynomial for every 
element of x1. � 

 

� Exercise 38  

Define x and y as follows: 

>> x = -5:5; 

>> y = 0.2 * x.^3 - x + 2; % a 3rd order polynomial 

>> y = y + randn(1,11); % add some noise to y 

Determine the 3rd order polynomial fitting y (note that because of added noise the coefficients are 
different from those originally chosen). Try some other polynomials as well. Plot the results in a 
figure. � 

8.2 Interpolation 

The simplest way to examine various interpolations is by displaying the function plots with the 
command plot. When the neighbouring data points are connected with straight lines, this is called 
linear interpolation. When more data points are taken into account, the effect of interpolation 
becomes less visible. Analyse: 
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>> x1 = linspace(0,2*pi, 2); 

>> x2 = linspace(0,2*pi,4); 

>> x3 = linspace(0,2*pi,16); 

>> x4 = linspace(0,2*pi,256); 

>> plot(x1, sin(x1), x2, sin(x2),x3,sin(x3),x4, sin(x4)) 

>> legend(‘2 points’,’4 points’,’16 points’,’256 points’) 

There also exist MATLAB functions that interpolate between points, e.g., interp1 or spline, as a 
1D interpolation and interp2, as a 2D interpolation. Perform the following commands: 

>> N = 50; 

>> x = linspace(0,5,N); 

>> y = sin(x) .* sin(6*x); 

>> subplot(2,1,1); plot(x,y); 

>> hold on 

>> p = randperm(N); 

>> pp = p(1:round(N/2)); % choose randomly N/2 indices of points from [0,5] 

>> pp = sort(pp);   % sort the indices 

>> xx = x(pp);    % select the points 

>> yy = y(pp); 

>> plot(xx,yy,’ro-’)  % this is a ‘coarse’ version 

>> yn = interp1(xx,yy,x,’nearest’); % nearest neighbour interpolation on 
all x points 

>> plot(x,yn,’g’) 

>> axis tight 

>> legend(‘Original’,‘Crude version’); % Nearest neighbour interpolation 

>> subplot(2,1,2); plot(xx,yy,’ro-’); 

>> hold on 

>> yc = interp1(xx,yy,x,’linear’);  % spline interpolation 

>> plot(x,yc,’g’); 

>> ys = spline(xx,yy,x); 

>> plot(x,ys,’k’) 

>> axis tight 

>> legend(‘Crude version’, ‘Linear interpolation’, ‘Spline interpolation’); 

8.3 Evaluation of a function 

As said before, the command plot plots a function by connecting defined data points.  

 

MATLAB Command Result 

fplot(‘f’,[min_x max_x] plots the function f on [min_x, max_x] 

fminbnd(‘f’, min_x, max_x, options) returns the x-value for which the function f 
reaches a minimum on [min_x, max_x] 

fzero(‘f’, x0) returns the x-value for which the function f is 
zero in the neighborhood of x0 

Table 8,  Evaluation of a function 

When a function is constant and not very interesting over some range, and next shows an 
unexpected wild behaviour over another, it might be misinterpreted by using plot. Then, the 
command fplot is more useful. An example is: 

>> x = 0: pi/8:2*pi; y=sin(8*x); plot(x,y,’b’) 

>> hold on 

>> fplot(‘sin(8*x)’,[0 2*pi],’r’) 

>> title(‘sin(8*x)’) 

>> hold on 

Execution of these commands results in a figure with an almost straight blue line and a red sine. 
fplot can also be used to plot a defined function: 

>> f = 'sin(8*x)'; 

>> fplot(f,[0 2*pi],'r');title(f) 
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Let: 

( )
( ) ( )

2 2

1 1

0.1 0.1 1 0.1
f x

x x
= +

− + − +
. 

The point at which ( )f x  takes its minimum is found using fminbnd. By default, the relative error is 
1e-4. It is possible however, to obtain a higher accuracy, by specifying an extra parameter while 
calling fminbnd. 

>> format long  % you need this format to see the change in accuracy 

>> f = '1./((x-0.1).^2 + 0.1) + 1. / ((x-1).^2 + 0.1)'; 

>> fplot(f,[0 2]); 

>> options = optimset('TolX',1e-4); 

>> [xm1,fm1] = fminbnd(f,0.3,1, options)  

>> options = optimset('TolX',1e-12); 

>> [xm2,fm2] = fminbnd(f,0.3,1, options)  

>> [xm1,xm2]  % compare the two answers 

Important: Note that format does not change the accuracy of the numbers or calculations; it just 
changes the numbers of digits displayed on the screen. 

 

� Exercise 39  

Determine the maximum of the function f(x) = x cos(x) over the interval 10<x<15. Hint: there is no 
function fmax. Find the minimum of –f(x), instead. � 

 

� Exercise 40  

Find the zero, i.e. x0, of the functions f(x) = cos(x) and g(x) = sin(2x) around the point x = 2. Use the 
command from table 8. Check the sign of  the functions for x0, and that the values are approximately 
zero. � 

8.4 Integration and differentiation 

The integral, or the surface underneath a 2D function, can be determined with the command trapz. 
trapz does this by measuring the surface between the x-axis and the data points, connected by 
straight lines. The accuracy of this method depends on the distance between the data points: 

>> x = 0:0.5:10; y=0.5*sqrt(x)+ x .* sin(x); 

>> integral1 = trapz(x,y) 

integral1 = 

  18.16550108689927 

>> x = 0:0.05:10; y=0.5*sqrt(x)+ x .* sin(x); 

>> integral2 = trapz(x,y) 

integral2 = 

  18.38461257420812 

A more accurate result can be obtained by using the command quad or quad1, which also 
numerically evaluate an integral of the function f specified by a string.  

Let again be: 

( )
( ) ( )

2 2

1 1

0.1 0.1 1 0.1
f x

x x
= +

− + − +
. 

>> f = '1./((x-0.1).^2 + 0.1) + 1./((x-1).^2 + 0.1)'; 

>> integral1 = quad(f,0,10) 

>> integral1 = quadl(f,0,10) 

You can also add an extra parameter to quad and quadl, specifying the accuracy. 

 

 



  

 

46 

� Exercise 41  

Find the integral of the function
21

2( )
x

f x e
−

= over the interval [–3,3]. Exercise with different 
MATLAB commands and different accuracies. � 

Differentiation is performed by determining the slope in each data point. Numerically this is done by 
first fitting a polynomial, followed by differentiating this function: 

>> x = 0:10; 

>> y = [-0.10 .24 1.02 -1.58 2.84 2.76 7.75 .35 4.83 5.22 7.51]; 

>> p = polyfit(x,y,5) 

>> dp = polyder(p) 

>> x1 = linspace(0,10,200); 

>> z = polyval(p,x1); 

>> dz = polyval(dp, x1); 

>> plot(x,y, 'g.-', x1, z, 'b', x1, dz, 'r:') 

>> legend('data points','curve fit','derivative')  

 

� Exercise 42  

Determine the integral and the derivative of the 4th polynomial fitted through (x,y) with x = 4:13 
and y = [12.84 12.00 7.24 –0.96 –11.16 –20.96 –27.00 –24.96 –9.56 25.44]. � 

8.5 Numerical computations and the control of flow structures 

Take a look at the problem of a Taylor expansion. The series will be determined numerically until 
the additional terms are smaller than a defined precision. Look at the Taylor expansion of : 

21
1 ...

1
x x

x
= + + +

−
 with  x = 0.42: 

 

 

 

 

 

The approximation of 1/(1-x) is returned in s (from sum). In the first case (on the left), the iteration 
process is stopped as soon as the next term t is smaller than an absolute value of 1e–6. In the other 
case, this value is relative to the outcome. 

 

� Exercise 43  

Find the Taylor expansion of 
1

1 x−
 and 

3 5

sin( ) ...
3! 5!

x x
x x= − + − with an absolute precision of 1e–5 

for x=0.4 and x=–0.4. � 

It is also possible to determine the Taylor expansion of 21
1 ...

1
x x

x
= + + +

−
 with a fixed number 

of 30 terms (x=0.42 again): 

 

 

 

 

 

 

Note that the index k can be indicated with a starting value, step size and end value. 

s = 0; x = 1; 
x0 = 0.42; 
while (x > 1e-6) % absolute 
 s = s + x; 
 x = x * x0; 
end 

Example 
s = 0; x = 1; 
x0 = 0.42; 
while (x > 1e-6 * s) % relative 
 s = s + x; 
 x = x * x0; 
end 

Example 

s = 0; x = 1; 
x0 = 0.42; 
 
while (x > 1e-6) 
 s = s + x; 
 x = x * x0; 
end 

Example 
s = 0; x = 1; 
x0 = 0.42; 
n1 = 1; step = 1; n2 = 30; 
for k = n1:step:n2 
 x = x * x0; 
 s = s + x; 
end 

Example 
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9 Optimizing the performance of Matlab code 

MATLAB is a matrix language, so it is designed for matrix operations. For best performance you 
should take advantage of this fact. 

9.1 Vectorization - speed-up of computations 

Vectorization is simply the use of (compact) expressions that operate on all elements of a vector 
without explicitly executing a loop. MATLAB is optimized such that vector or matrix operations are 
much more efficient (faster) than loops. Most built-in functions support vectorized operations. So, 
try to replace loops with vector operations whenever possible. For example, instead of using: 

for k = 1:10 

  t(k) = 2*k; 

  y(k) = sin(t(k)); 

end 

try this: 

t=2:2:20; 

y = sin(t); 

Copying or transforming matrices can be vectorized as well. Check the equivalence between the 
scalar version: 

n = 10; 

A = rand(n,n); 

B = ones(n,n); 

for k = 1:n 

  B(2,k) = A(2,k) 

end 

and the vectorized code of the last loop: 

B(2,:) = A(2,:); 

Or, check the equivalence between the following loop: 

for k=1:n 

  B(k,1) = A(k,k); 

end 

and the vectorized expression: 

B(1:n,1) = diag(A(1:n,1:n)); 

Logical operations and proper use of the colon notation make programs work faster. However, some 
experience is needed to do this correctly. Therefore, the advise is: start first with the scalar code and 
then vectorize it where possible, by removing loops. 

� Exercise 44  

Look both at your script or function m-files already written, especially your loop exercises. Try to 
vectorize their codes wherever possible. � 

 

� Exercise 45  

Try to vectorize the following two code examples !: 

 

 

  

 

 

� 

n=20; 
m=10; 
A = rand(n,m); 
for ii = 1:n 
 for jj = 1:m; 
  if (A(ii,jj) > 0.5) 
   A(ii,jj) = 0; 
  else 

   A(ii,jj) = 1; 
  end 

 end 

end 

code 1 
n=20; 
m=10; 
A = randn(n,m); 
x = randn(n,1); 
p = zeros(1,m);  
% this is an array pre-allocation 
for ii = 1:m 
 p(ii) = sum(x .* A(:,ii)); 
 % what is p here? 
end 

code 2 
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9.2 pre-allocation an array 

In ‘real’ programming languages the programmer has to allocate (reserve) memory. In MATLAB, this 
is not required, but it improves the execution speed and, apart from that, it improves the readability 
of the code. Preallocating an arrays that stores output results, prevents MATLAB from resizing this 
array each time you enlarge it. Preallocating also helps to reduce memory fragmentation if you work 
with very large matrices. During the MATLAB session memory can be fragmented. As a result, there 
may be plenty of free memory, but not enough contiguous space to store a large variable. 

� Exercise 46  

Create two scripts with the listings below. Run them and compare the results, i.e., measure their 
execution times. The pair of commands tic and toc is used to this end. 

 

 

 

 

 

 

 

 

 

Remember that scripts work in the workspace, inferring with the existing variables. Therefore, for a 
fair comparison the variables s and x should be removed before running each script. Having done 
this, try to vectorize the code. � 

9.3 MATLAB’s tricks and tips 

Matrix elements can be addressed in MATLAB using a vector as an index: 

• If x and y are vectors, then x(y) is the vector [x(y(1)), x(y(2)), ..., x(y(n))],  where 
n=length(y). For instance: 

>> x = [3 -1 4 2 7 2 3 5 4]; 

>> y = 1:2:9; x(y) 

ans =  

   3  4  7  3  4 

>> y = [5 5 5]; x(y) 

ans = 

   7  7  7 

>> y = [1 5 1 1 7]; x(y) 

ans = 

   3  7  3  3  3 

• If x and y are vectors of the same size and y only consists of 0’s and 1’s then MATLAB 
interprets y via logical-indexing. As a result, the elements of x are returned whose position 
corresponds to the location of a 1 in y. For instance: 

>> x = [3 -1 4 2 7 2 3 5 4]; 

>> y = x < 4, x(y) 

y =  

   1  1  0  1  0  1  1  0  0 

ans =  

   3  -1   2   2   3 

>> y = (x == 2) | (x > 6), x(y) 

y =  

   0  0  0  1  1  1  0  0  0 

ans =  

   2  7  2 

clear s x; 
tic; 
x = -500:0.1:500; 
% without array pre-allocation 
for k = 1:length(x) 
 if (x(k) > 0) 
  s(k) = sqrt(x(k)); 
 else 

  s(k) = 0; 
 end 

end 

toc; 

code 1 
clear s x; 
tic; 
x = -500:0.1:500; 
s = zeros (size(x)); % preallocate 
for k = 1:length(x) 
 if (x(k) > 0) 
  s(k) = sqrt(x(k)); 
 else 

  s(k) = 0; 
 end 

end 

toc; 

code 2 
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The examples before should serve you to optimize your MATLAB routines. Use help when 
necessary to learn more about commands used and test them with small matrices. When more 
solutions are given, try to use tic and toc to measure the performance for large matrices, in order 
to decide which solution is faster. Depending on the version of MATLAB, the computer hardware, 
and the dimension of the matrices (the value of n) the speed of the given solutions may vary. 

• Create a row (column) vector of n uniformly spaced elements: 

>> a = -1; b = 1; n = 50; 

>> x1 = [a:2/(n-1):b];  % a row vector 

>> y1 = [a:2/(n-1):b]’;  % a column vector 

>> x2 = linspace(a,b,n);  % a row vector 

>> y2 = linspace(a,b,n)’; % a column vector 

 

• Shift k (k should be positive) elements of a vector: 

>> x = [3 -1 4 2 7 2 3 5 4]; 

>> x([end 1:end-1]);   % shift right (or down for columns) 1 element 

>> k = 5; 

>> x([end-k+1:end 1:end-k]) % shift right (or down for columns) k elements 

>> x([2: end 1]);   % shift left (or up for columns) 1 element 

>> x[k+1:end  1:k]);   % shift left (or up for columns) k element 

 

• Initialize a vector with a constant 

>> n = 10000; 

>> x = 5 * ones(n,1);  % 1st solution 

>> y = repmat(5,n,1);  % 2nd solution 

>> z = zeros(n,1); z(:)=5; % 3rd solution 

 

• Create an nxn matrix of 3’s 

>> n = 1000; 

>> A = 3 * ones(n,n);  % 1st solution 

>> B = repmat(3,n,n);  % 2nd solution 

 

• Create a matrix consisting of a row vector duplicated m times: 

>> m=10000 

>> n = 10000; 

>> x = 1:5; 

>> A = ones(n,1) * x;  % 1st solution 

>> B = x(ones(n,1),:);  % 2nd solution 

 

• Create a matrix consisting of a column vector duplicated n times: 

>> n = 100; 

>> x = (1:5)’; 

>> A = x * ones(1,n);  % 1st solution 

>> B = x(:,ones(n,1));  % 2nd solution 

 

• Given a vector x, create a vector y in which each element is replaced n times: 

>> n = 10; 

>> x = [2 1 4]; 

>> y = x(ones(1,n),:); y = y(:)’; 

>> x = [2 1 4]’; 

>> y = x(:, ones(1,n))’; y = y(:); 
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• Reverse a vector: 

>>n = 100000; 

>> x = [1:n]; 

>> x(n:-1:1)     % 1st solution 

>> fliplr(x)     % 2nd solution 

 

• Reverse one column of a matrix: 

>> A = round (5 * rand(10,20)); 

>> c = 2; 

>> A(:,c) = flipud (A(:,c)); 

 

• Interchange rows or columns of a matrix: 

>> A = round (5*rand(10,20)); 

>> i1 = 1; i2 = 4; 

>> A([i1,i2],:) = A([i2,i1],:);  % swap rows 

>> A(:,[i1,i2]) = A(:,[i2,i1]);  % swap columns 

 

• Matrix A can be transformed into a row vector by writing A(:). 

Find out which elements are shared by two matrices (or vectors): 

>> A = round (5*rand(10,20)); 

>> B = round (6*rand(30,50)); 

>> intersect (A(:), B(:));      % different sizes of A and B are permitted 

 

• Combine two vectors into one, removing repetitive elements: 

>> x = [1:10]; 

>> y = [1 5 4 1 7 -1 2 2 6]; 

>> union (x,y) 

 

• Find unique elements in a vector 

>> x = [1 5 4 1 7 -1 2 2 6 1 1 ]; 

>> unique(x) 

 

• Keep only the diagonal elements of the matrix multiplications, i.e., vectorize the loop (both A 
and B are n-by-m matrices): 

>> A = round (5*rand(10,20)); 

>> B = round (7*rand(10,20)); 

 

>> z = zeros(n,1);    1st solution 

>> for ii = 1:n 

>>   z(ii) = A(ii,:) * B(ii,:)’; 

>> end 

 

>> C = diag(A * B’);       % 2nd solution 

>> D = sum (A.* B, 2);     % 3rd solution 

 

• Scale all columns of the matrix A by a column vector x: 

>> A = round (7*rand(10,20)); 

>> [n,m] = size(A); 

>> x = [1:n]’; 

>> B = A ./ x(:,ones(m,1)); 
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• Scale all rows of the matrix A by a row vector x: 

>> A = round (7*rand(10,20)); 

>> [n,m] = size(A); 

>> x = [1:m]’; 

>> B = A ./ x(ones(n,1),:); 

 

Other useful tips are: 

• Use the ginput command to input data with a mouse. Try, for instance: 

>> x = 0; y = 0; 

>> while ~isempty(x) 

>>   [x1,y1] = ginput(1); 

>>   plot([x x1], [y y1], ‘b.-’); 

>>   hold on 

>>   x = x1; y = y1; 

>> end 

 

• If you want to find out what takes so long in your MATLAB code, use the command profile, 
which ‘helps’ you debug and optimize M-files by tracking their execution time. For each 
function, the profiler records information about execution time, number of calls, parent 
functions, child functions, code line hit count, and code line execution time. Try, e.g.:  

>> profile on - detail builtin 

>> rgb = imread(‘ngc6543a.jpg’); 

>> profile report 

 

10 Writing and debugging MATLAB programs 

The recommendations in this section are general for programming in any language. Learning them 
now will turn out to be beneficial in the future or while learning real programming languages like C, 
when structured programming is indispensable. 

10.1 Structured programming 

Never write all code at once; program in small steps and make sure that each of these small steps 
works as expected, before proceeding to the next one. Each step should be devoted to only one task. 
Do not try to solve many tasks in one module, because you may easily make a mess. This is called a 
structured or modular way of programming. Formally, modularity is the hierarchical organization 
of a system or a task into self-contained subtasks and subsystems, each having a prescribed input-
output communication. It is an essential feature of a well-designed program. The benefits of 
structured programming are: easier error detection and correction, modifiability, extensibility and 
portability. A general approach to program development is presented below: 

Specification 

Read and understand the problem. The computer cannot do anything on its own: you have to tell it 
how to operate. Before using the computer, some level of preparation and thought is required. Some 
basic questions to be asked are: 

• What are the parameters/inputs for the problem? 

• What are the results/outputs for this problem? 

• In what form should the inputs/outputs be provided? 

• What kind of algorithm is needed to find the outputs from the inputs? 
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Design 

Split your problem into a number of smaller and easier tasks. Decide how to implement them. Start 
with a schematic implementation to solve your problem, e.g. create function headers or script 
descriptions (decide about the input and output arguments). To do this, you may use, e.g., a top-
down approach. You start at the most general level, where your first functions are defined. Each 
function may be again composed of a number of functions (subfunctions). While ‘going down’ your 
functions become more precise and more detailed. 

Imagine that you have to compare the results of the given problem for two different datasets, stored 
in the files data1.dat and data2.dat. Schematically, such a top-down approach could be designed 
as follows: 

This is the top (the most general level. A script solve_problem is created: 

load data1.dat; 

load data2.dat; 

[res1, err1] = solve_problem (data1); 

[res2, err2] = solve_problem (data2); 

compare_results (res1, res2, err1, err2); 

This is the second level. The functions solve_problem and compare_result belong here. 

Each of them has to be defined in a separate file: 

function [res, err]=solve_problem (d) 

% Here should be some (possibly detailed) description. 

.... 

res = ...   % the data d is used to compute res 

err = compute_error (res); 

return; 

function compare_results (res1, res2, err1, err2) 

% some description. 

tol = 1e-6; 

.... 

if abs (err1 - err2) > tol 

   fprintf (’The difference is significant.’) 

else 

   fprintf (’The difference is NOT significant.’) 

end 

return; 

In this example, this is the last level. The function solve_problem uses the function: 

 compute_error, which has to be defined: 

function err = compute_error (res) 

% here should be some (possibly detailed) description. 

.... 

err = ...     % the variable res is used to compute err 

return; 

Coding 

Implement the algorithms sequentially (one by one). Turning your algorithm into an efficient code is 
not a one-shot process. You will have to try, make errors, correct them and even modify the 
algorithm. So, be patient. While implementing, make sure that all your outputs are computed at 
some point. Remember about the comments and the style requirements (see section 10.3). 
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Running and debugging 

Bugs will often exist in a newly written program. Never, ever, believe or assume that the code you 
just created, works. Always check the correctness of each function or script twice. You may add 
some extra lines in your code to present intermediate results (screen displays, plots, write actions to 
files) to help you controlling what is going on. These lines can be removed later. 

Testing and verification 

After the debugging process, the testing stage starts. Prepare a number of tests to verify whether 
your program does what it is expected to do. Remember: the good tests are those for which the 
answers are known. Your program should produce correct results both for normal and extreme test 
values. 

Maintenance 

In solving your task, new ideas or problems may appear. Some can be interesting and creative and 
some can help you to understand the original problem better; you may see an extent to your problem 
or a way to incorporate new things. If you have a well-designed program, you will be able to easily 
modify it after some time. Don’t forget to improve your solutions or correct your errors when found 
later. 

Debugging 

Debugging is the process by which you isolate and fix any problem with your code. Two kinds of 
errors may occur: syntax error and runtime error. Syntax errors can usually be easily corrected using 
MATLAB error messages. Runtime errors are algorithmic in nature and they occur when, e.g., you 
perform a calculation incorrectly. They are usually difficult to track down, but they are apparent 
when you notice unexpected results. Debugging is an inevitable process. The best way to reduce the 
possibility of making a runtime error is by defensive programming, given by: 

• Do not assume that input is correct, simply build in checks to that end; 

• Where reasonable and possible, provide a default option or value; 

• Provide diagnostic error messages; 

• Optionally, print intermediate results to check the correctness of your code. 

Defensive programming is just a part of the early debugging process. Another important part is 
modularity, breaking large tasks into small subtasks, which allow to develop tests for each of them 
more easily. You should not forget to run the test again after the changes have been made. To make 
this easy, provide extra print statements that can be turned on or off. 

MATLAB versions >= 5.x provide an interactive debugger. It allows you to set and clear breakpoints, 
specific lines in an m-file at which the execution halts. It also allows you to change the workspace 
and execute the lines in an m-file one by one. The Matlab m-file editor also has a debugger. The 
debugging process can be also done from the command line. This command provides a number of 
options for stopping execution of a function. A particular useful option is: 

dbstop if error 

This stops any function causing an error. Then just run the MATLAB function. Execution will stop at 
the point where the error occurs, and you will get the MATLAB prompt back so that you can examine 
one line at a time. You can continue execution with the dbcont command. To exit debug mode, type 
dbquit. For more information, use help for the following topics: dbstop, dbclear, dbstep, 
dbtype, dbup and dbquit.  

10.2 Recommended programming style 

Programming style is a set of conventions that programmers follow to standardize their code to 
some degree and to make the overall program easier to read and to debug. 

1. You should always comment difficult parts of the program! But ... do not explain the obvious. 

2. Comments describing tricky parts of the code, assumptions, or design decisions are suggested 
to be placed above the part of the code you are attempting to document. Try to avoid big blocks 
of comments except for the description of the m-file header. 
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3. Indent a few spaces (preferably 2 or 3) before lines of the code and comments inside the control 
flow structures. The layout should reflect the program ‘flow’. Here is an example: 

x = [0:0.1:500]; 

for k = 1:length(x) 

  if x(k) > 0 

    s(k) = sqrt(x(k)); 

  else 

    s(k) = 0; 

  end 

end 

4. Avoid the use of magic numbers; use a constant variable instead. When you need to change the 
number, you will have to do it only once, rather than searching all over your code. An example: 

% A BAD code that uses                % This is the way it SHOULD be 

% magic numbers 

r = rand(1,50);                       n = 50; % number of points 

for k = 1:50                          r = rand(1,n); 

  data(k) = k * r(k);                 data = sum(1:n) .* r; 

end 

y = sum(data)/50;                     avr = sum(data)/n; 

disp([’Number of points is 50.’]);    disp([‘Number of points is ’... 

            ,int2str(n)]; 

5. Avoid the use of more than one code statement per line in your script or function m-files. 

6. No line of code should exceed 80 characters (it is a rare case when this is impossible). 

7. Avoid declaring global variables. You will hardly ever encounter a circumstance under which 
you will really need them. Global variables can get you into trouble without your noticing it! 

8. Variables should have meaningful names. You may use the standard notation, e.g. x, y are real 
valued, ii, jj, k are indices and n and m are integers (because i and j are used for the imaginary 
part of complex numbers rather use ii and jj for indices). This will reduce the number of 
comments and make your code easier to read. However, here are some pitfalls when choosing 
variable names: 

• A meaningful variable name is good, but when it gets longer than 15 characters, it tends to 
obscure rather than improve the code readability. 

• Be careful with names since there might be a conflict with MATLAB’s built-in functions, or 
reserved names such as mean, end, sum etc. (check in the manual’s index or ask which 
<name> in MATLAB - if you get the response <name> not found it means that you can safely 
use it). 

• Avoid names that look similar or differ only slightly from each other. 

9. Use (blank) spaces, both horizontally and vertically, since it will greatly improve the readability 
of your program. Blank lines should separate larger blocks of code. 

10. Test your program before submitting it. Do not just assume it works. 

 


